
A HISTORICAL ADVENTURE
-FOR THE-

APPLE COMPUTER

A Historical Adventure for the Apple® Computer
(Apple II Edition)

Art Canfil, Karl Albrecht,
and Jim McClenahan

Original Artwork
Chrisann Brennan

Hayden Book Company
A DIVISION OF HAYDEN PUBLISHING COMPANY, INC.

HASBROUCK HEIGHTS, NEW JERSEY

A BASIC Dedication

ID Dill WH04 (4) ■> REASONS (4)

ED PRINT"TO:"

30 FOR THANKS + 1 TO 4

4D READ WHOS (THANKS)

5D READ REASONS (THANKS)

bO PRINT UHOS (THANKS)-,

7D PRINT REASONS (THANKS)

60 NEXT THANKS

=10 END

1DD DATA THE DRAGON-. FOR DRAGGING AND DRAGOONING US UNTIL UE

wrote THIS BOOK-, ELDER BROTHER UU-i as a representative of

FINANCIAL REALITIES (IF THE DRAGON HELD THE CARROT - lilU HELD

THE STICK)

110 DATA BARBARA FINGER FOR EVERYTHING FRON ENCOURAGEMENT

TO COPYREADING-, OUR FAMILIES-, FOR THEIR PATIENCE AND

SUPPORT DURING THIS PROJECT

Acquisitions Editor: Karen Pastuzyn
Production Editor: Ronnie Groff
Cover design: Paul Perlow
Printing and binding: The Maple-Vail Manufacturing Group

Copyright © 1986 by HAYDEN BOOK COMPANY. All rights reserved. No part of
this book may be reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage and
retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 PRINTING

86 87 88 89 90 91 92 93 94 YEAR

Preface — How to Use this Book

This book is written for anyone with a bit of Applesoft BASIC program¬
ming knowledge. It is organized so as to allow program lines to be typed
into any Apple II computer as you read along.

To make it easier to understand how Taipan works, the program will be
shown in a form different from that in which it will actually appear in your
Apple II.

Here is an example of a line as it will be presented in this book:

5fl0 IF X = 1 AND GP C XI) > C THEN VTAB Ifl:

PRINT "YOU CAN'T AFFORD ANY "G$(XD". "i:

GOSUB 7b0:

GOTO E3D

In the above example, each logical portion of line 280 is placed by itself.

This is closer to how line 280 will look on your screen after you've typed
it into your Apple II:

EflO IF X = 1 AND GP(X1) > C THEN VTAB Ifl:

PRINT "YOU CAN'T AFFORD ANY "G$(XD

"• :G0SUB7b0:G0T0S3D

The Apple II computer formats a screen listing of a BASIC program in its
own special way. Although you may type in the program as shown above,
the computer will add spaces and advance to the next screen line accord-
ing to its built-in way of doing things. Thus the lines will appear different
if, later, you go back to list them.

The most important thing to remember is this: we've used separate
lines to show program logic clearly, but you must ignore those separate
lines while actually typing this program into your Apple II.

It is a good idea to regularly save copies of the program to disk, espe¬
cially when you intend to quit working on it for awhile.

Remember that the letter "O" is not the same thing as the numeral "0"
— they may look much the same, but to your computer, they're entirely
different. Also, some readers may be accustomed to typewriters which use
a lowercase letter "1" as a substitute for the numeral "1". Be sure to use the
proper key, as the computer knows the difference.

The game Taipan presented in this book is designed to be played on any
of the "family" of Apple II computers using Applesoft BASIC, and at least

48K of RAM.

The section of this book entitled "Sea Action" adds graphics routines to
make pirate encounters more exciting.

Introduction

In recent years there has been a mushrooming growth in the field of
video games. First came simple games in which little white dots bounced
back and forth between movable paddles on the screen. Soon these were
followed by enormously successful games of shoot-'em-up, eat-'em-up
and blow-'em-up.

Entire industries were built upon the growing mass appeal of these
games. Investors and corporate conglomerates have poured in millions to
keep the video game market constantly expanding. That market has
grown, and grown, and grown.

The inevitable has finally happened — people have started to lose
interest in video games. Increasingly, people are finding that they "burn
out" on games which they find require more of an ability to "twitch"
than to think.

This slackening of interest has shaken stockmarkets, retail outlets, and
corporate boardrooms. Investors have begun to be cautious about putting
their money into electronic games.

But the integrated circuit technology which made video game
machines possible also has set the stage for inexpensive home com¬
puters. Rather than being limited to a finite number of game cartridges,
home computers allow their users to design, write, and execute their own
programs, especially in the relatively simple and English-like computer
language called BASIC, with which the vast majority of these machines
are equipped.

Recently, a very important milestone was reached, almost without
fanfare: more home computers are now being sold than video
game machines.

Think about this: home computers make possible a type of electronic
game which is much less based upon exercising the reflexive speed of a
person's brain stem than upon exercising the wonderful gray matter with
which humans think.

Among the best of such games are those which simulate a complex
environment, and allow the player to interact in a "lifelike" manner with
that game environment.

The Authors call such games "Contextual Computer Games".

Contextual Computer Games may be a wave of the future in the field
of entertainment and education. Contextual Computer Games take
advantage of the computer's speed and power to process information by
keeping track of all the elements with which the player must interact.
Thus the complexity of the game can be maintained.

But "complexity” can be a misleading word, and a negative one at that.
Because a game is complex in its elements doesn't mean it has to be
"complex" to play. Baseball is complex in its elements, too. But it doesn't
take an Einstein to play it — partly because there is a trained Umpire to
say what is supposed to work, and what isn't.

Think of the program of a Contextual Computer Game as being, in one
respect, an Umpire. It tells you when you've scored, and it tells you
when you're "out". But all you've got to do is play.

The strength of a Contextual Computer Game lies not only in this
"automatic Umpire" aspect, but also in its ability to provide unique expe¬
riences to even veteran players. A Contextual Computer Game puts
together a multitude of factors in constantly changing combinations, to
provide challenges much like "real life".

Taipan: A Historical Adventure for the Apple Computer is intended to give

the Apple II user three things.

1. An understanding of some fundamental principles of game design

2. A geographical and historical understanding of a particular game con¬
text (in this case, Asia and the turbulent China Trade of the 1800's)

3. A step-by-step approach to actually writing a game in BASIC using
points 1 and 2 above, including the actual program lines needed to
provide a complete Contextual Computer Game

The Authors hope that this book will provide the reader not only with
an enjoyable game providing many hours of entertainment, but that the
reader will become interested in the game's historical background as
well. Hopefully, the reader will be inspired to design original games
based upon other historical or fantasy contexts.

May you live in interesting times . . .

Contents

1 Setting the Scene: Hongkong in the Mid-1800's 1

2 Translating the Context into a Game 5

3 Initializing Ourselves into the Past 9

4 Taipan Geography 19

5 A Space-Time Machine 27

6 To Market, To Market ... 37

7 Cash on the Barrelhead 59

8 Keeping Our Other Options Open 77

9 Let's All Go Down to the Godown 85

10 An International Record Collection 95

11 Brother, Can You Spare a Dime? Ill

12 A Gold Watch and a Hearty Handshake 123

13 Anchors Aweigh! 129

14 Piratical Princess of the Eastern Seas 139

15 Stand by the Swivel Guns! 147

16 More Pirates 163

17 Ships of the China Coast 181

18 Current Events 187

19 Action at Sea 199

APPENDIX A Bibliography 209

APPENDIX B Playing Taipan 211

INDEX 213

T A I P A N
-i Historical Adventure for the Apple® Computer

Setting the Scene:
Hongkong in the Mid-1800's

CHAPTER ONE

Anyone who has read the remarkable novel, Tai-pan, by James Clavell, or
Dynasty, by Robert S. Elegant, knows something of the exotic and excit¬
ing flavor which the words "China Trade" can conjure.

Consider a time and place where fearless and amoral merchant-
smugglers of European and American origins struggled and fought, lived
to the fullest, and died — and made or lost fortunes in trade throughout
the newly opened markets of East Asia.

The doors to trade with China and Japan had been blasted down by
the overwhelming military might of the young nations of Europe and
America. England, France, Holland, Portugal, and Spain had established
important colonial footholds providing local bases for their fleets, mis¬
sionaries, and merchants. Commodore Perry's intimidating black fleet of
American ships had forced the Shogun to open Japan to the traders of
the West. Britain's Opium War had inflicted a humiliating defeat upon
the Manchu Empire, obliging China to accept trade even in the hated
addictive opium. Throughout East Asia, in that violent time, there were
warlords and rebels who would pay huge sums for modern Western
arms. Europe, in return, hungered for the tea, spices, silks, and gold of

1

2 TAI PAN: A Historical Adventure for the Apple Computer

the fabled Orient. Immense fortunes could be made by men without
principles to hinder them, if they were brave enough . . .

The China Traders were just such men.

Although the native peoples called them many other, less complimen¬
tary names, the Chinese expression taipan (or tai-pan) was the one seized
upon as a title by these Western traders of the China Seas. Tai m Chinese
means "great" or "gib" or even "supreme". Pan means "leader or
"boss" in that language. The China Traders took the name to mean
"Supreme Leader". This term still is used for the heads of trading firms
from Hongkong to Singapore. But to the Chinese, anyone not Chinese

was a barbarian, even if such a person was a "big boss".

The China Trade followed one of the customary rules of business: the
greater the potential profit, the greater the risk. But the risks to the tai-
pans were greater than merely going bankrupt: there was always a

strong possibility of sudden, and unnatural, death.

Pirates roamed the seas, some of them operating in vast fleets out of
ports and coves from Japan to the Malay islands. For the most part, these
fleets were under strict military organization, and they were manned by
Japanese, Chinese, Malay and European seamen, mercenary adventurers
to match the likes of the taipans upon whom they preyed. Often the wis¬
est thing a China trader could do was to pay out whatever the pirate
chieftains demanded in tribute, rather than face the dangers of deadly
pirate attacks. But even if one pirate organization had been bribed not to
attack, an independent pirate gang might unpredictably attack. Thus the
taipans armed their clipper ships, lorchas, and junks heavily.

Another troublesome factor was the presence of the "triads", the
underworld secret societies of the Chinese. These triads were to be found
wherever large numbers of Chinese lived or worked. Originally founded
as Chinese resistance organizations against the hated Manchu rulers of
China, the triads had also gradually become organized crime syndicates
which wielded violence and money as weapons to exert their power and
influence. While Western bankers were often unwilling to extend credit
to the taipans, sometimes the triads would — at very steep interest rates.
Of course, it could be very dangerous not to repay such a loan on time.

Setting the Scene: Hongkong in the Mid-1800's: CHAPTER ONE 3

This, then, was the world of the China Trade, where incredible risks
were taken daily by the taipans, and where enormous riches could be
grabbed by the fearless, the resourceful, and the lucky. This is the context
around which you are about to build yourself a computer game.

T A I P A N
A Historical Adventure for the Apple® Computer

Translating the Context into a Game
CHAPTER TWO

No simulation game can take everything in an environment into account.
Just think of the problems involved in trying to create such a "complete"
Contextual Computer Game: In the context which we are planning to
implement, you'd literally have to take into account the personal psy¬
chology, habits, and economic position of every person even partly
involved in the China Trade. Not only that, but you'd have to account for
the tides and weather conditions in each tiny patch of the China Seas.
You'd have to know the location of, and the behavior of, all the wharf rats
in Asia. Then what about fluctuations in the financial markets of Europe,
the political connivings of the Eunuchs in the Chinese Imperial Court,
the effect of frost on silkworms?

These are only a handful of possible items which could be enumer¬
ated. Many of these factors may seem unimportant, even irrelevant, at
first glance. But they all added to the actual environmental context of the
real taipans. So how are we to take them into account?

Obviously we can't put all these things into a single game, but we can
do something which better suits our purposes. We can design a game in
such a way that, when playing it, we feel as though these kinds of factors
are part of the program.

5

6 TAI PAN: A Historical Adventure for the Apple Computer

How? There are two main approaches to this problem: First, we can
include a number of common events, such as bad weather and pirate
attacks, as fairly regular situations. Secondly, we can create a number of
rare events, like random robberies and dramatic rises or falls in prices of
goods, as representative of the vast number of things which could actually

happen in the "real world".

Using the built-in "random number generator" of your Apple II com¬
puter we can make some events happen quite regularly, while other situ
ations may not occur more than once, if at all, during any particular
game. We can set the probability of any event anywhere within a broad

spectrum of likelihood.

Trade-offs
We also need to make the context of the game interactively "realistic". In
other words, the player should have a feeling that the "world of the
game reacts as the real world does. For example, reality constantly
presents us with "trade-offs" — situations where we have choices
between two or more alternatives, each of which has advantages and dis¬

advantages.

If we are on foot, and need to cross a road against heavy traffic, we
might have two choices: One choice might be to jay-walk across the
road. The other could be to go down two blocks to a pedestrian overpass,
and cross there. With the first choice, we might cross the road much
more quickly, thus saving some of our precious time — but we risk not
only getting a citation from a police officer, but being killed by a careless
driver. With the second choice, we cross the road legally and safely — but

we use up more time.

Now let's add another factor: urgency. Suppose that we've just been
bitten by a poisonous snake, and the nearest hospital is across the road.
Should we jay-walk or take the overpass? Or what if we had all the time
in the world that day. Which route then?

In a Contextual Computer Game, we can vary this factor of urgency.
Plus we can vary the danger of the traffic, the pedestrian's ability to
dodge cars, and even the structural safety of the overpass! Trade-offs.
They're vital factors in Contextual Computer Games, and we'll use them

in Taipan.

Player Motivation
Motivating the player is the key to any good game. You don't have to pos¬
sess a degree in psychology to know some of the things which motivate

Translating the Context into a Game: CHAPTER TWO 7

people. The desire for power, a lust for money, the drive to gain social sta¬
tus, the pleasure of accomplishing something difficult — all these are
common motivations. In Taipan, we will attempt to motivate the player
with a combination of greed and pride.

Greed is vital, because only with this can the player fit into the role of a
taipan, the role into which our game will thrust the player.

You may wonder how real greed could be generated in a mere game —
after all, there's no real money involved. If you're skeptical about this,
then try to remember the last time you played Monopoly. After playing
for a few minutes, didn't you get just a little greedy? If not, you're an
exceptional person, and you probably didn't have much fun!

But there's a vital factor here that can't be overlooked by a game
designer: in a game (and maybe in life?), wealth, power, or any other
reward, will not taste sweet unless there is a struggle to gain it. What
would be the purpose of playing Solitaire with all the cards in the deck
face up? There has to be a conflict, and obstacles to overcome, for any
reward to feel like a reward.

So in this game we've got to make the player struggle to satisfy
greed. That struggle, if successfully carried out, will result in pride of
accomplishment.

Difficulty

The degree of difficulty is perhaps the most troublesome factor of all. A
game designer has to get it just right. If it's too hard to play, everyone
hates the game. Too easy, and people despise it for being trivial. Yet
everyone has different standards! It looks as though any game, at best,
would appeal only to a certain segment, doesn't it? Not necessarily: by
using trade-offs properly, a single game can be a sort of "one-size-fits-
all" proposition. It can challenge the bright and the dull, the veteran and
the novice player.

How so? There can be so many trade-offs between risky riches and
safer plodding, between dangerous shortcuts and secure paths, that
there is almost literally something for everybody. We are putting together
a game in which anyone who can read and understand words and num¬
bers, and can poke keys on an Apple II computer, has a chance to win —
a game in which a PhD with degrees in Asian Studies, Computer Sci¬
ence, and Accounting might lose. A tall order? Maybe. But let's give it a
try, together.

T A I P A N
A Historical Adventure for the Apple® Computer

Initializing Ourselves into the Past
CHAPTER THREE

Get your Apple II computer set up! We're about to start typing in our
Contextual Computer Game.

Everything must start somewhere — a computer program begins with
initialization. Here are the first lines of our Initialization routine:

5 REM INITIALIZATION (10-SD)

10 HOME:

A$="

W$="ELDER BROTHER UU":

LY$="LI YUEN":

YS$="YAMAT0 & SMYTHE":

TC$ = "0i S-i T-. A-. P-- OR R"

11 B$="

9

10 TAIPAN: A Historical Adventure for the Apple Computer

[Note that there are 40 spaces within the quotes which define A$ in line
10, and 39 spaces in quotes of B$, in line 11]

ED VTAB 4:

INVERSE:

PRINT A$:

HTAB 13:

PRINT "T A I P A N:":

NORMAL:

HTAB 13:

PRINT"-"

[The last "PRINT" statement in line 20 has 17 underline ("_") characters]

El SPEED = 100:

VTAB T:

HTAB 14:

PRINT "A GAME IN":

PRINT T AB (15)=,"C 0 N T E X T":

PRINT:

PRINT TAB(14)^"HAYDEN BOOK C0-"

EE SPEED = ESS:

VTAB IS:

INVERSE:

PRINT A$:

NORMAL

What's going on in lines 10 to 22?

First, we use "HOME" to clear the screen. Next, we create five strings,
A$, W$, LY$, YS$ and TC$. A$ consists of 40 spaces strung together.
We've created a "string" variable which can be called up and printed at
any time: a line of spaces, which we'll use to blot out unwanted stuff

from the screen.

Initializing Ourselves into the Past: CHAPTER THREE 11

is used to hold the name of someone we'll get rather too
acquainted with in the game, the Triad moneylender. Elder Brother Wu.
\ player starting the game is immediately in debt to Elder Brother Wu.
The player is assumed to have fled Britain rather hastily and under some-
thing of a cloud, perhaps signing up as a crewmember on a ship depart-
ng Liverpool for the Crown Colony of Hongkong, then jumping ship

and starting business under an alias. Of course, no bank in its right col-
ective mind would do business with such obvious riff-raff. So you, as the

player, had to turn to the "Elder Brother", or chief, of one of the under¬
ground Chinese secret societies. Mr. Wu is willing to make you a loan.
UTiv not? After all, at 100% interest, he can't lose, can he? You've
checked around enough to know that Elder Brother Wu's rate of interest
is considered quite reasonable by the Chinese standards of the time.

"LY$" will be used to hold the name of a "mariner" who can be either
your friend or your foe, depending upon events and on how you look at
them. Let's face it, most folks would consider Li Yuen a pirate. But he
would much rather think of himself as the head of a private maritime pro¬
tective agency, employing a few thousand rough and ready fellows of
many nations, the sort of men who might be on the wrong side of the
law, were it not for Li. Li has a huge fleet of armed junks and lorchas, and
he patrols both coastal waters and the high seas in order to protect his
"clients", namely those who are willing to donate to his favorite charity,
the building fund of the temple of Tin Hau, a Chinese Sea Goddess.
(Odd: the temple never seems to be quite completed . . .)

"YS$" is also used for names we'll get to know later.

Next, in the interest of saving memory, we set up a string called
"TC$", which is simply part of a prompt we'll use later in the program,
whenever the player must choose which item of cargo to deal with.

In line 11, B$ is set up to be a string of 39 spaces. Like A$, we'll use this
to "clear away" unwanted messages.

Lines 20 through 22 give us our title display.

"VTAB 4" in line 20 tells the computer to position its cursor at V(ertical)
TAB 4, in other words, at the fourth line on the screen. (Since we haven't
yet given any "HTAB" — or Horizontal TAB — our Apple II assumes we
start at HTAB 1, the first column of the line.) The INVERSE statement
tells the computer that whatever is displayed should be in inverse mode,
in other words, dark letters on an illuminated background. PRINT A$

12 TAIPAN: A Historical Adventure for the Apple Computer

gives a line of 40 inverse spaces. This appears as a bar of light across the
screen on the fourth line.

Since we've just filled in the entire fourth line of the screen, our Apple
now assumes that our VTAB is 5. HTAB 13 thus puts the cursor to the 13th
column of screen line five. Program line 20 next has our Apple display the
name of the game, TAIPAN, still in inverse lettering, and with inverse
spaces between the letters. Our Apple II would continue to forever dis¬
play words in inverse mode if we let it. We get out of the inverse mode by
using the NORMAL statement, then we print a line of underline ("_")
characters.

Line 21 of the program continues in much the same way to display the
"title page" of our game. But there are some differences. "SPEED = 100"
instructs the computer to slow down its rate of display, so that we can
actually see the letters light up on the screen one by one. (The lower the
number, the slower the display speed. 255 is normal high speed, and 100
is much slower.) We also use the TAB statement in line 21. TAB(14), for
instance, works by putting the next PRINT position at the fourteenth
column of the screen.

Now we begin to really initialize the program with the next two lines:

30 DIM -.£*(5)-.APdiS)

GG(S)tL(5t5)tGP(5)tV(5):

FOR I = 0 TO 1:

READ L$(I):

NEXT I:

FOR I = 0 TO 11:

READ I1$(I) :

NEXT I:

FOR I = 0 TO 5:

READ G$(I):

NEXT I

40 FOR I = 0 TO 5:

FOR J = 0 TO 5:

READ AP(IiJ):

AP (I -i J) = AP(I-,J) * b a (S - J): NEXT J I:

G0SUB ISO

Initializing Ourselves into the Past: CHAPTER THREE 13

In these lines we've reserved space for numerical and string variable
arrays, and read in string and numerical information from DATA lines
which will follow.

But what do these variables stand for, and why are we using them? To
use an old phrase, what do they have to do with the price of tea in China?

These variables will, in fact, among many other things, be used to keep
track of the price of tea in China!

Chinese tea was an item of huge economic importance in Europe, par¬
ticularly Britain, in the last two centuries. Having been introduced into
China from Southeast Asia during the time of the Han Empire (206 BC-
AD 220), tea was originally considered a medicine, at first being con¬
sumed after being boiled with rice, orange peels, milk, or even onions.
Soon, tea was being planted widely in southern and central China. Later,
the present method of boiling tea alone in water became the standard
practice.

During the 1700's tea became the national beverage of the English. The
merchants and officials of the Ch'ing dynasty of China, and their coun¬
terparts in Britain, reaped huge profits from the booming trade. Within a
century, the tea trade had grown to three-fifths of China's exports.

The British effort to monopolize the trade, and exploit its wide popu¬
larity, led to the imposition of tea taxes as high as 100 percent or more.
The Boston Tea Party and the slogan, "Taxation without representation is
tyranny", resulted. Thus the China tea trade contributed to the causes of
the American Revolution.

Line 40 reads in raw values for prices of items of trade, then massages
them so that opium, for instance, will cost more than rice.

Another item which we are initializing in line 40 is "arms". As early as
1629, the Chinese Jesuit, Paul Hsu, helped the Ming dynasty (1368-1644)
try to hold back the Manchu invaders from the north. To this end, he
obtained artillery (and the cannoneers to handle them) from the Portu¬
guese in Macau. Another Jesuit, Father Adam Schall, set up a foundry for
the Ming regime in 1636, casting twenty cannon, and naming each after
an individual saint. From those times onward, Asians have sought West¬
ern arms with much interest.

We're also setting up variables to deal with rice. In China, as in almost
all of East Asia, it is the food grain of choice. Like tea, rice is believed to
have come to China from Southeast Asia, but in the dim past of prehis-

14 TAI PA N: A Historical Adventure for the Apple Computer

tory. Rice since ancient times has been the basis of all meals for peasant
and aristocrat alike. Steamed rice, fried rice, curried rice, rice cakes, rice
pudding, rice wine, rice liquor and even rice paper — this grain has even
been used for paying taxes through the centuries in the Orient. In Japan,
Inari is the God of Rice, and is symbolized by the fox. During most of
Chinese history, the Emperor himself, as the Son of Heaven, would cere¬
moniously plow a furrow on the Lunar New Year to ensure a good har¬

vest for all his subjects.

But rice never has caught on equally in the West, and since it is a rela¬
tively cheap bulk item carried in huge rice barges by the local people
themselves, it will stand at the low-priced end among the cargo items
with which our game will concern itself.

We will use pepper as a representative of spices in general. (Another
item we'll introduce in a moment is silk. Since for playing ease we want
to be able to select items by just their first letter, we'll use pepper as a

stand-in for all spices.)

Spices are what drove the Portuguese to invade the eastern oceans,
competing with the Arabs, who controlled the long-established trade in

spice from the Orient to the Occident.

Rounding the south of Africa before the end of the fifteenth century,
the Portuguese soon established themselves at Hormuz on the Persian
Gulf, defeated the Arab fleets, drove on to take Goa in India, Malacca in
Malaya, and eventually to set up "factories" (actually trading posts) on
the so-called Spice Islands of the Moluccas in the East Indies.

A desire to have a piece of the spice trade was Spain's primary motiva¬
tion for financing the voyages of Christopher Columbus, resulting in
his accidental discovery of the Americas instead of a short-cut to the

East Indies.

Silk is another item we are starting to initialize in line 40.

The ancient Romans, trading through intermediaries, imported so
much Chinese silk from the Han Empire, the one-sided trade drained the
Roman Empire of much of its gold and silver, doing severe damage to the

Roman economy.

Later, during Europe's Middle Ages, Maffio and Niccolo Polo, Venetian
merchants, followed the same inland Silk Route which had linked the
Chinese and Romans. (Eleven years later in 1271, Marco Polo, Niccolo's

Initializing Ourselves into the Past: CHAPTER THREE 15

-: - oined them in another visit to China. There Marco noted that many
European Christians were already present, proselytizing or serving the
‘._biai Khan as soldiers of fortune.)

The production of silk was an extremely labor-intensive industry. After
- itching, 700,000 silkworms weigh in at only a pound. Tenderly cared for
md hand-fed mulberry leaves for over a month, that single pound of cat-
emdars turns into five tones of mature silkworms! By that time, they've
eaten twelve tons of mulberry leaves. After all this, only around 150
tvunds of silk is produced, and then only after laboriously reeling the
silk to make thread. Is it any wonder that silk was expensive?

In the late 1700's the British were attempting to make their growing tea
and silk imports less damaging to their economy than silk had been to
the Romans fifteen hundred years earlier. They needed export items to
balance the trade, so that all their silver and gold would not end up in
Chinese hands. They struck upon cotton from Bombay (in the Surat area
of northwestern India) and opium (from Calcutta in the Bengal region of
northeastern India). Since the British controlled India, they could get
these items quite cheaply. The moneys made by selling these items in
China balanced the tea and silk trade with China.

As the years passed, opium began to replace cotton in its economic
value to the British.

Opium was not unknown to the Chinese, but it had traditionally been
used very sparingly and as a medicine, much as it and other opiates are
now used in Western pharmacology. But the importation of massive
amounts of this narcotic drug by the British, at a time of dynastic decline
and decadence in China, caused the opium habit to sweep across that
country like a plague.

Opium so altered the balance of trade between the British and the Chi¬
nese that a drain on Chinese silver bullion caused a rapid fall in silver's
exchange rate with the more common copper currency of China, the
"cash". Another effect upon China was the ability of this narcotic trade
to corrupt officials. The anti-Manchu Triad secret societies were in the
forefront of handling the Chinese side of the trade, often intimidating or
assassinating any Chinese official who might try to suppress opium.

With between two and ten million habitual opium smokers in China by
the early 1830's, many patriotic Chinese became alarmed, though others,
including high officials, connived with the opium traders.

16 TAI PAN: A Historical Adventure for the Apple Computer

Despite the rampant corruption of the time, one official. Commis¬
sioner Lin Tse-hsu (1785-1850), was brave, determined, and incorruptible
enough to attack the opium trade head-on. Ordered by the Manchu
Emperor to suppress the opium trade, he arrived in the southern Chi¬
nese trading port of Canton in 1839. Lin began to close down the city's
opium dens, and to arrest and execute Chinese opium traders. He wrote
letters to Queen Victoria, with well-reasoned arguments against opium.

In one such letter, Lin wrote, "Suppose there were people from
another country who carried opium for sale in England and seduced your
people into buying and smoking it; certainly [you] would deeply hate it
and be bitterly aroused . . ."

Commissioner Lin impounded 20,000 chests (about 133 pounds of
opium each) from the British traders. He then had the opium burned
publicly, in an act which is still considered heroic by Chinese of all politi¬

cal persuasions.

But the British were not amused.

England launched the Opium War (1839-1842) in large part to make
certain that the trade, so important to the British imperial economy,
though physically, mentally, politically and economically destructive to
the Chinese, could be maintained at any cost.

It is in this opium trade that the taipans — such as Jardine, Matheson
and Company, and Dent and Company — made the lion's share of their

fortunes.

Since lines 30 and 40 READ information from DATA lines, let's just skip
to those DATA lines right now.

b5 RE11 INITIALIZATION DATA (70-110)

70 DATA HONGKONGiFOOCHOWi

shanghai-i Nagasaki-.Manila-,

SINGAP0RE-.BATAVIA-.SAIG0N-.

CALCUTTAiLIVERPOOL

SO DATA JAN-iFEB-iMAR-.APR-iMAY-.JUN

B1 DATA JUL-.AUG-.SEP-.0CT -.NOV-iDEC

Initializing Ourselves into the Past: CHAPTER THREE 17

= : DATA OPIUM-,SILK-,

TEAtARMS-iPEPPER-iRICE

SOD DATA fiiE-iE-iMiS-iS-ifi-iS-ilifl-iM-iBi

Ti3i3iti5i4ibi4iEiflibi5i

3 -i 3 -i 4 -i 7 i4i4iEi4i5i4i3i5i

3i4iS-.SiE-.ti3ili4iS-.3-.3-.

liSibi3i4iSi3i1iTili1iS

In detail, lines 30 and 40, working with DATA lines 70 through 100, do
as follows:

The "DIM" statement in line 30 dimensions (sets aside variable space)
for a one-dimensional string array to hold the names of the months of the
year: "M$(ll)". (It only has to be dimensioned to 11 rather than 12
because we will call January month number "0". In Applesoft BASIC, we
can save valuable memory space by always making use of zero as a legiti¬
mate subscript of dimensioned variables.)

"G$(5)" is used to hold the names of our six items of trade, in each of
the ten ports of call. Another numerical array which we dimension is
"GG(5)". This stores the amount of each item of cargo stored in our
Hongkong "godown" (a term of Malay origin meaning "warehouse",
which the British brought with them to East Asia). "L(9,5)" and "H(9,5)"
are used, respectively, to keep track of the highest, and the lowest, prices
encountered in the port we are visiting.

JjmcLiasn-

T A I P A N
.4 Historical Adventure for the Apple® Computer

Taipan Geography
CHAPTER FOUR

We'll be visiting some very exotic ports o' call in Taipan. So the next thing
we do in line 30 is start a loop to READ strings from DATA line 70 into

L$(I)". The loop increments the variable "I" from 0 to 9. This causes the
subscript of our "location" string to change upon each READ. The net
result is that L$(0) will hold the string, "HONGKONG", and L$(9) will
be "LIVERPOOL". (The subscripts 1 through 8 will cause the location
string to hold the other ports' names.)

Most people we run into don't really know much about geography. If
we ask the average person "where is Singapore?", we'll probably get a
guess like, "Isn't it in China?"

Let's give you a chance (in case you don't already know all your geog¬
raphy) to be in a position to feel superior to such people. You've no doubt
heard of such a thing as "Restaurant French" (useful to the mainly non-
French-speaker when ordering food at Chez Continental), or "Take-Out
Chinese" (needed when ordering some mouth-watering fried noodles).
These are handy little miniaturized versions of languages which many of
us learn just so that we know enough to read a menu and order some¬
thing we love to eat — rather than pointing to a menu item in hopeful

19

20 TAIPAN: A Historical Adventure for the Apple Computer

ignorance, and getting some exotic and mysterious thing which, when it
arrives, we're not sure is even food.

We're going to cover something the Authors will call "Taipan Geogra¬
phy", a sub-set of world geography which will be limited to ten ports,
eight in East Asia, and one each in Central Asia and Western Europe.

Hongkong (usually written in two words as "Hong Kong" these days)
is a British Crown Colony. Its official name is Victoria, but hardly anyone
has ever called it that.

In July of the year 1839, several drunken British sailors killed Lin Wei-
hsi, a Chinese villager. The Superintendent of British Trade, Captain
Charles Elliot, refusing to recognize Chinese jurisdiction over British sub¬
jects, would not hand over the sailors to Chinese justice. Commissioner
Lin Tse-hsu, he of opium-burning fame, stepped up his pressure tactics
against the British traders in Canton, forcing them to withdraw first to
Macau, then to the coastal islands of South China. The traders settled as
squatters on the island of Hongkong in August of 1839.

Hongkong island, when the traders first occupied it, was a mountain¬
ous and rocky island with only a few small fishing villages. It lies at the
mouth of the Pearl River, downstream some ninety miles from Canton,
the traditional trading port of China. Across the wide mouth of the Pearl
from Hongkong is Macau, the Portuguese colony which had been estab¬
lished in 1557. Between Hongkong island and the Chinese mainland is a
fine natural harbor, usually protected by terrain from the devastating
typhoons of the South China Sea. Before Lin could shake a stick at them,
the traders, sailors and British officials on the island numbered in the
thousands, and about fifty ships were anchored in Hongkong harbor.
Commissioner Lin attempted to starve out the squatters, but enterprising
Chinese merchants easily got through the blockade.

The Opium war ensued, with the British military taking control of sev¬
eral coastal Chinese cities. The Chinese, soundly beaten by the British,
agreed in 1842 to open the so-called "Treaty Ports" of Canton, Amoy, Foo¬
chow, Ningpo and Shanghai to the British traders. Another concession
by the Chinese was Hongkong, which then became officially a British
possession.

Eventually, the Crown Colony grew in size, as the mainland penin¬
sula of Kowloon, and the adjacent "New Territories" were added to
British control.

Its strategic location, its fine harbor, and the fact that it was outside the

Taipan Geography: CHAPTER FOUR 21

control of the Chinese government, all combined to make Hongkong the
headquarters, refuge, and warehouse of the China Traders.

Of the five Treaty Ports, we will only use two, Foochow and Shanghai,
as representatives.

Foochow, capital of Fukien province, had also been the capital of the
Min kingdom (909-944 AD) during a period when China was broken up
into ten kingdoms. After internal rebellions partly disrupted foreign
trade to the south along the coast during the middle of the nineteenth
century, Foochow became an important import and export trade center.
Tea from Foochow was famous throughout the world.

Shanghai is positioned in the middle of China's coast, at the juncture
of the East China and the Yellow Seas, and at the mouth of the Yangtse
River. The Yangtse gives Shanghai access to a huge slice of China by river
barge traffic, through the Yangtse River basin and with connections via
the Grand Canal to the Huai and Yellow River basins.

Shanghai became the most Westernized city in China, with traders
and banks from many foreign countries setting up business there. As
foreign countries wielded greater and greater power in China, it even¬
tually came to pass that signs in Shanghai parks read "No Dogs or Chi¬
nese Allowed".

Outside of China itself, the taipans roamed East Asia widely. One
place in which they traded was Japan.

For more than two hundred years after 1641, Nagasaki, on the southern
island of Kyushu, was the only place in Japan where foreigners were
allowed to trade. The Dutch traders (who were the only Westerners
allowed to trade with Japan), were kept in near-prison conditions, con¬
fined to the tiny man-made island of Deshima in Nagasaki harbor. These
restrictions lasted until after Commodore Perry of the United States
coerced the Shogun into approving the Treaty of Kanagawa in 1854. That
treaty, and a commercial treaty negotiated by the American diplomat,
Townsend Harris in 1858, opened Japan to the West, and to the taipans.

Our next port o' call is Manila. Although other Europeans may have
visited what today is known as the Philippines, it was Fernando Magel¬
lan, a Portuguese in the service of Spain, who attempted to take these
islands for the Spanish crown. In 1521, after having rounded the south¬
ern tip of South America and crossing the Pacific, Magellan landed on the
tiny island of Mactan, just off the central island of Cebu.

22 TAIPAN: A Historical Adventure for the Apple Computer

Before the Spanish arrived, the Philippines were an island group with
separate, small tribal groups and local Muslim sultanates. To the Span¬
ish, who hoped to find spices there, these islands looked to be easy pick¬
ings. In a demonstration of macho which might have been admirable
(had it not been fatal), Magellan showed the Spanish flag against hostile
"savages" led by a local chief, Lapu-Lapu. Magellan grew tired of staying
within the protection of his ships' guns, and personally led soldiers onto
the beach to find the "enemy". There he found them, just out of the pro¬
tective cover of his ships' guns. The native warriors had dug trenches on
the beach. Bursting forth from the concealment of these trenches, Lapu-
Lapu's fighters fell upon the surprised Spanish, killing Magellan. The
survivors of the expeditionary fleet returned to Spain under Captain del
Cano, completing the first circumnavigation of the globe.

In 1565, Miguel Lopez de Legaspi arrived on Cebu and began a system¬
atic conquest of the Philippines. By 1571, Legaspi had established the
Intramuros ("within the walls") fortress at Manila, on the northern
island of Luzon. (The Spanish had found a thriving small native town at
the site of the Intramuros, named Maynilad, controlled by Raja Sul-
ayman of the newly arrived Muslim faith. In the southernmost islands of
the Philippines the Muslim "moros" (moors) remained rebellious, and
have never been truly integrated into the Philippines.)

Manila stands on the shore of one of this planet's greatest natural har¬
bors. The Spanish found that the Philippines lacked the spices which
they had coveted — they had been shut out of the spice trade by the ear¬
lier arrival of the Portuguese in the Moluccas to the south. But the Span¬
iards soon adapted themselves, using Manila harbor as a transshipment
point for a trade in silk from China and other goods from the Orient.
These goods were traded for silver coins from Acapulco in Mexico (the so-
called "Dollars Mex" which were an international currency in Asia for
centuries). This commerce came to be called the Manila Galleon trade.
Following favorable winds, the Spanish found the best route to the east¬
ward leg to Mexico was far to the north, where they would pick up the
westerly tradewinds. In returning to the Philippines from Acapulco, the
Manila Galleons would take a more southerly route. For well over two
centuries (1572-1815) the Manila Galleon trade continued almost
unchanged. Incredibly, the Spanish never discovered the Hawaiian
Islands, though their huge galleons sailed past them to the north and to
the south all those years.

Singapore is located just a few miles north of the equator, on an island
at the tip of the Malayan peninsula, and at the south-eastern end of the

Taipan Geography: CHAPTER FOUR 23

straits of Malacca. Since most sea traffic between Europe and East Asia
pass through the Straits, Singapore's location is strategic.

The story is told that when an ancient Buddhist prince saw the island,
he named it Singa Pura, or "Lion City", because he was supposed to
have seen lions there. (This was in the days before eyeglasses: there have
never been lions in the area of Singapore.) The Malays who have long
lived there called the place Tumasek, or Sea Town.

When the British first came, in January of 1819, to establish a base in
Singapore, they found an island little inhabited except by a few pirates.
Sir Thomas Stamford Raffles was the brilliant and energetic Imperialist
who built modern Singapore. Originally an entrepot port (for warehous¬
ing and transshipment of goods) for East and South East Asia, Singapore
has grown into a progressive and modern manufacturing center as well.

Perhaps nowhere else in the world can such a population mix be
found: Singapore has long had a population of Chinese, Malays, Indi¬
ans, Pakistanis and Europeans.

The taipans of old would crowd around the Long Bar at the Raffles
Hotel, swapping stories and plotting intrigues, perhaps drinking the
pink gin concoction known as a Singapore Sling, which originated at the
bar. The Long Bar and the Raffles still exist, echoing with faint memories
of the time of the taipans.

If you can identify Batavia, you're well ahead of the pack in this Taipan
Geography lesson. Because you can't find it on maps these days.

At the west end of the north coast of the heavily populated island of
Java, Batavia was established in 1619 by the ruthless Dutchman, Jan
Pieterzoon Coen. The city had modern European buildings, yet
remained dangerously unsanitary and unhealthy in the tropical climate.

The Dutch competed intensely with other Europeans, stealing the
spice trade from the Portuguese and setting up a system of "factory"
posts linking the Netherlands with their eastern enterprises. Dutch posts
were established in India, Ceylon, Burma, Siam, Cambodia, Vietnam,
Taiwan and Japan.

The Dutch East India Company (Vereenigde Oostindische Compagnie)
soon dominated the Indonesian islands, developing a form of colonialism
which may have been the harshest ever devised. In an effort to control
spice trade completely, the Dutch destroyed all clove trees throughout
Indonesia, growing them only on the island of Amboina, and generally

24 TAI PAN: A Historical Adventure for the Apple Computer

would allow only certain spices or crops, such as nutmeg, to grow on
selected islands. The effect of this imposed monoculture was often to
impoverish or starve the local populations. But this was of little concern
to the profit-seeking Dutch Company. Chinese middle-men were used by
the Dutch to farm taxes and crops from the native people.

When the Japanese invaded the Dutch East Indies during World War
II, they renamed the city "Jakarta", which it had been called in ancient
times. At the end of the war, the British forces attempted to re-establish
the Dutch in Indonesia. When the British landed in the fall of 1945, they
at first found the Indonesian nationalists fighting the Japanese. The Brit¬
ish, rather than disarm the Japanese troops, instead ordered them to con¬
tinue fighting the Indonesians, in order to put the Dutch colonial
administrators back in the saddle. The attempt of the Dutch to regain
control of Indonesia was long and bitter, but resulted in an independent
Indonesia in 1949, with its capital at Jakarta.

Though Batavia is better known to the world as Jakarta, our next port,
Saigon, is better known by that old name than by the official new one,
"Ho Chi Minh City".

French interests in Vietnam began as early as 1648, through well-
organized Jesuit missionary work. Known in the 1800's as Annam (from
the Chinese words An Nan, meaning "Pacify the South"), Vietnam had
gradually become a French colony between 1858 and 1885. Saigon, situ¬
ated not far from the sea on the navigable Saigon river, was rarely a capi¬
tal during the history of Vietnam. But it was certainly the most vigorous
commercial center of that country. The administrative center of Cochin
China, as the French called the southern rice-growing delta area of Viet¬
nam, Saigon (and its Chinese quarter, Cho Lon) became one of the busi¬
est ports in Southeast Asia.

Calcutta, in the Bengal region of India, was among the British Empire's
major ports, beginning with a factory post there in 1690. At first, the
trade from Calcutta was mainly in textiles, sugar and raw Bengal silk,
traded to Europe. This commerce developed into the so-called "country
trade", with private British traders carrying the goods. By the late 1700's,
this "country trade" was turning toward China as a market, and to
opium as a profitable trade item. Opium was harvested in the Bengal as a
monopoly of The Honorable British East India Company (originally
named "The Governor and Merchants of London Trading into the East
Indies", and granted a monopoly on trade in the Pacific and Indian

Taipan Geography: CHAPTER FOUR 25

Oceans by Queen Elizabeth in 1600). The Company auctioned the opium
to private traders in Calcutta.

The Honorable Company was something the likes of which boggles
modern minds. A joint-stock company founded for private profit, it had
its own British military force assigned to it, numbering over 20,000 sol¬
diers before 1800 in India alone. It had warships, and it had powerful
influence over British policies.

By the time of our game, 1860, opium from Calcutta had become an
established institution in Asian trade.

The English port city of Liverpool will represent British and European
ports in general in Taipan. Through this port on the Mersey estuary and
the Irish Sea, passed a large share of Britain's trade with the Orient.

A sailing ship in the 1860's would take roughly from six to eight
months to reach Hongkong from Liverpool, sailing around Africa's Cape
of Good Hope, into the Indian Ocean, and through the Straits of Malacca
into the China Seas. The Dutch had discovered the technique of continu¬
ing directly eastward after rounding the Cape of Good Hope. This prac¬
tice allowed the "Roaring Forties" (high winds which whip around
Antarctica in an eastward direction at about forty degrees south latitude)
to push ships quickly toward East Asia, without the need to stop in India.
Before using these winds, the eastward passage had taken even longer.

T A I P A N
A Historical Adventure for the Apple® Computer

A Space-Time Machine
CHAPTER FIVE

We're not yet finished laying the foundation for the environment of our
game. The next loop in line READs in the abbreviations of the months,
from "JAN" to "DEC" into "M$(I)"; from DATA line 80. Likewise, the last
loop in this line READs in DATA from line 90, naming the items of trade.

Line 40 sets up "nested" loops (one within another) which READ in
DATA from line 100, then run it through a funny-looking formula to
arrive at a raw base price for each item in each port.

That funny-looking formula takes a simple, one digit number from line
100 and multiplies it according to the type of item. For instance, opium
will always cost more than rice. We're using this formula, rather than just
putting the whole numbers in DATA statements, simply to save memory
space. (Saving space in microcomputer memory is an art and science
which is as necessary as it is evil.)

These base prices will later be further processed upon first arriving in
each port, to give us the actual prices. This is done after the final state¬
ment of line 40, "GOSUB 180".

Let's skip to line 180 so we can see what it does . . .

27

28 TAI PAN: A Historical Adventure for the Apple Computer

175 REM PRICE VARIATION SUBROUTINE (ISO)

ISO FOR I = □ TO 5:

GP (I) = INT (AP(L-iI) + (RND (1) * APCL-.I))):

NEXT I:

RETURN

Line 180 takes the "base price" variable array "AP(L,I)", adds a ran¬
dom fraction of itself, knocks off any decimal fractions with the "INT"
function, then puts the resulting number, the actual local item prices,
into the one-dimensional "GP(I)" array. The variable "L" is the number of
the port we are in, and "I" is incremented through the loop from 0 to 5.
We never did give a value to "L", but since it was never set, it automati¬
cally has a value of zero. But since zero is the number of our home-port,
Hongkong, we're sitting pretty. (The Authors have used this method
generally. All undimensioned variables which should start as zero aren't
initialized, as both a labor- and memory-saving technique.)

We then have the "NEXT I" statement to match the "FOR I = 0 TO 5"
statement, and a RETURN to get us back to where we started.

Now let's go back and continue to line 50:

50 FOR I = 0 TO 5:

READ L0(I):

NEXT I:

D = 1000:

Y = IflUO:

GT = l:

C = WOO:

MU = 50:

SH = MW:

SR = l:

G = 1:

V(0) = l:

G0SUB 5000:

X$ =

G0SUB 550:

A Space-Time Machine: CHAPTER FIVE 29

HOME:

GOTO 120

In line 50, we feed numbers into array "LO(I)" from DATA line 110.
These values will later be processed further to give the ports we'll visit
relative distances from one another.

Here's the data which is used by line 50:

110 DATA 21 -i 14 t 7 -i 0 t 35 n

45 -.5b-. 42 ,A4i 200

We set up several other very important variables in line 50. With
D = 1000" we set the player's debt to the Triad moneylender, Elder

Brother Wu, to 1000. "A thousand what?", you may ask.

There were many currencies used in the China Trade, including British
pounds, Chinese Taels, Dollars Mex, and the copper Chinese "cash". For
game purposes, we aren't going to specify what currency we're using.
(That way we'll avoid both currency exchange problems, and the need to
explain prices which might not be exactly accurate historically!) Remem¬
ber, this is primarily a game, not an exact historical simulation. The
Authors usually will choose game playability as opposed to literal accu¬
racy in such situations.

Continuing with line 50, the next variable we have is "Y = 1860". This
sets the year to 1860. "GT = 1" sets a variable which keeps track of "game
time", the total supposed days elapsed during a game. "C = 400" sets the
player's cash to 400 (some things). "MW = 50" sets the maximum weight
of cargo that the player's vessel can carry to 50 units of cargo. "SH = MW"
sets the portion of that capacity which is presently available in the ship's
hold. Since we start with an empty hold, SH starts as the same as MW.
"SR = 1" sets the vessel's state of repair at 100%. Whenever we print out
the value of SR, we'll be converting it to percentage form. Thus an "SR"
value of .10234 would print out as "10%". (Anything less than 10% state
of repair, as we'll see when we encounter pirates, causes our ship to sink,
and our game to unceremoniously end.) With "G = 1", we have given our
craft one cannon with which to try to defend itself. "V(O) = 1", by setting
a single element of the V(L) array to a value of one, tells the computer
that our coming visit to Hongkong will be our first to that port o' call. The

30 TAiPAN: A Historical Adventure for the Apple Computer

V(L) array keeps track of how many times we've visited each port — a
nice tidbit of information which the program will make available later.

We GOSUB 590 because of a peculiarity of Applesoft BASIC. Our
game uses random numbers a great deal, to simulate the ebbs and flows
of reality. Some microcomputers get these random numbers from
"noise" generators which they otherwise use for sound effects. Other
machines, including the Apple II, simulate randomness by using com¬
plex mathematical formulas to draw out pseudo-random numbers from a
large built-in list of values. There is basically no problem with this second
method, as long as we can't predict which number will come up next. But
with the Apple II, the fact is that, every time the machine is turned on,
the same list is processed the same way. (Other machines which use
pseudo-random numbers derived from a list have a "RANDOM" or a
"RANDOMIZE" statement in BASIC which "re-seeds" the random
number generator to produce essentially unpredictable numbers.)

The net result of the way the Apple II handles random numbers is that
it's possible to have every "random" occurrence become completely pre¬
dictable to an experienced player. Prices, events, pirate attacks, etc.,
could happen in the same dreary order. We need some way to randomize
our not-quite-random number generator. The Randomizer Subroutine at
line 590 does this for Taipan. So here it is:

565 REM RANDOMIZER SUBROUTINE (510-511)

510 VTAB 15:

HTAB 8:

PRINT "PRESS <"i:

FLASH:

PRINT "SPACEBAR"^:

NORMAL:

PRINT "> TO START"i :

GOSUB L0:

IF X$ = " " THEN RETURN

511 X = INT (RND (1) * 1) + l:

GOTO 510

A Space-Time Machine: CHAPTER FIVE 31

Our Randomizer simply cycles and recycles itself endlessly until the
player presses the spacebar. Each time this line loops back upon itself, the

X = INT (RND (1) * 9) + l" statement pulls a pseudo-random number
from the random number generator. Since it does this very quickly and
very often, it should be impossible for a player to know how many times
the subroutine has cycled. Each time it has cycled, another number in the
machine's list of numbers has been used. (We had to use the statement,
X$ = * " in line 50 prior to calling the Randomizer subroutine, because
had we not, there could already be a space character in X$ before we
wanted it, thus defeating our purpose. The subroutine at line 60, which
will be discussed later, simply collects a character from the keyboard to
put in X$. In this case, we're looking for a "space" character.) The play¬
er's unpredictable timing in pressing the spacebar will effectively re-seed
the random number generator, making certain that each game is different
from the last.

Next in line 50, we use the statement, "HOME", which clears the
screen. We are now finished with initialization.

Here, once again, are the lines we've used so far, so you can check your
exact typing:

5 REN INITIALIZATION (10-50)

10 HONE:

A$ = "

ld$ = "ELDER BROTHER UU":

LY$ = "LI YUEN":

YS$ = "YANAT0 & SMYTHE":

TC$ = "On Sn Tn An Pn OR R"

11 B* = "

(Note that there are 40 spaces within the quotes which define A$, and
39 spaces in the quotes of B$, in line 11.)

32 TAIPAN: A Historical Adventure for the Apple Computer

SO VTAB 4:

INVERSE:

PRINT A$:

HTAB 13:

PRINT "T A I P A N:":

NORMAL:

HTAB 13:

PRINT "_

(The last "PRINT" statement in line 20 has 17 underline characters.)

El SPEED = 100:

VTAB T:

HTAB 14:

PRINT "A GAME IN":

PRINT TAB(1S)^"C 0 N T E X Tn:

PRINT:

PRINT TAB (14) =i "HAYDEN BOOK CO."

EE SPEED = ESS:

VTAB IS:

INVERSE:

PRINT A$:

NORMAL

30 DIM M*(ll)iG*(S)-.AP(Ti5)i

GG(5) iLH-.5) -.GP(S) V (T) :

FOR I = D TO 1:

READ L$(I):

NEXT I:

FOR I = 0 TO 11:

READ M$(I):

NEXT I:

FOR I = D TO 5:

A Space-Time Machine: CHAPTER FIVE 33

READ G$(I) :

NEXT I

40 FOR I = 0 TO 1:

FOR J = 0 TO 5:

READ APdiJ) :

AP(IiJ) = AP (11J) * b a (S - J): NEXT J I:

GOSUB IflO

SO FOR I = 0 TO

READ LOCI):

NEXT I:

D = 1000:

V = IfitO:

GT = l:

C = 400:

Nld = SO:

SH = Util:

SR = l:

G = l:

V(0) = l:

GOSUB 5000:

X$ =

GOSUB STO:

HONE:

GOTO 120

bS REN INITIALIZATION DATA (70-110)

70 DATA HONGKONG-.FOOCHOU-,

SHANGHAIiNAGASAKItNANILAt

SINGAPORE i BAT A VI An SAIGON-,

CALCUTTA-i LIVERPOOL

34 TAIPAN: A Historical Adventure for the Apple Computer

ao DATA JAN1FEB1MAR1APR1MAY1JUN

fii DATA JUL1AUG1SEP1OCT1NOV1DEC

TO DATA OPIUMiSILKi

TEA1ARMS1PEPPER1RICE

100 DATA fli2i2iMi5i2ifii2ilifliMi3

T-i3i3-itn5-.M-.tnM-.2-.fi-.b-.S-i

3i3iMi7iMiMi2iMi5iMi3i5i

3iMi5i5i2ibi3iliMi5i3i3i

li5itn3iMi5i3iTiTiliTi5

110 DATA BlilMi7i0i35i

MTi5biMBiflMi200

175 REM PRICE VARIATION SUBROUTINE (ISO)

ISO FOR I = 0 TO 5:

GP(I) = INT (AP(LiI) + (RND (1) * AP(LiI)))

NEXT I:

RETURN

SfiS REI1 RANDOMIZER SUBROUTINE (5T0-5T1)

5T0 VTAB 15:

HTAB fl:

PRINT "PRESS <"i:

FLASH:

PRINT "SPACEBAR"i:

NORMAL:

PRINT "> TO START"i :

GOSUB bO:

IF X$ = " " THEN RETURN

A Space-Time Machine: CHAPTER FIVE 35

ST1 X = INT (RND (1) * T) + 1:

GOTO 510

Now we've used our Apple II for a purpose never envisioned by its
designers: it has operated as a space-time machine to initialize us onto
the China coast in the 1860's!

T A I P A N
A Historical Adventure for the Apple® Computer

To Market, To Market
CHAPTER SIX

The Main Display routine begins:

115 REM MAIN DISPLAY <120-150)

120 GOSUB 130:

GOTO 220

With those simple instructions, we tell our Apple II to show our Main
Display ('GOSUB 130"), then, with "GOTO 220", to show the local mar¬
ket prices and our trading menu.

Let's continue with our Main Display subroutine first:

130 VTAB l:

HTAB l:

PRINT "PORT "iL$(L)^ :

HTAB 2fl:

PRINT M$(M)i". " i D A + li"-,"iY

37

38 TAIPAN: A Historical Adventure for the Apple Computer

This line does the following:

First, the cursor is positioned at the upper left-hand corner of the
screen, then it prints the word, "PORT", followed by a space and then
the name of the port itself. (Remember the "L$(L)" array?) Farther to the
right on the first line, at horizontal position 28, is printed the abbrevia¬
tion of the month. (Originally the value of the month variable, M, will be
"O", so "M$(M)" will read "JAN".) We then print a period to neaten the
abbreviation, and follow this with a space. Next, the day of the month is
printed. Note that the variable for the day of the month is DA, to which
we add the number 1 before printing it. This is done because the com¬
puter will actually be counting the days of the month from 0 to 29. This
will appear to the player as days 1 to 30. Of course, there are not thirty
days to each month, but this seems a reasonable way of doing things,
considering the memory-eating alternative of setting up an exact calen¬
dar! (Once more, "gaming" takes precedence over "realism".) Finally
line 130 prints the year, variable Y. (We previously used Y to set the
game's beginning year to 1860.)

Continuing our Main Display subroutine, we have lines 140 and 141:

140 VTAB 2:

INVERSE:

PRINT "CASH "i:

<2 = C:

G0SUB 1330:

NORMAL:

VTAB 2:

HTAB 2fl:

PRINT "GUNS n\G:

VTAB 3:

PRINT "DEBT :

a = D:

G0SUB 1330:

VTAB 3:

HTAB 26:

PRINT "HOLD "i:

Q = SH:

To Market, To Market . . CHAPTER SIX 39

GOSUB 1330

141 VTAB 4:

INVERSE:

PRINT "GOODS ABOARD SHIP HONGKONG GODOlilN":

NORMAL

A player will often find that quantities in Taipan (such as cash, debt,
and trade goods) will become enormously large. Applesoft BASIC is
designed so that it will allow the display of numbers under one billion
(1,000,000,000) in a normal fashion, but it will display numbers from one
billion on (including negative numbers) in a computer version of "scien¬
tific notation".

This display of big numbers is a bit different than the usual sort of sci¬
entific notation. In the non-computer type of scientific notation which
many of us have encountered in school, one billion would look like this:

1 x la^

This could be written out in words as "one times ten to the ninth
power". But one billion, as displayed by our Apple II, would normally
look like:

lE + DI

Not too swift, actually. Not something which a player who is not famil¬
iar with computers would be likely to understand! (Even the non¬
computer style of showing scientific notation is hardly neat or convenient
for the layperson to comprehend — the computer version is just worse.)

Yet even using an awkward version of scientific notation, numbers may
simply get too long to display in the number of spaces we have available
for them in the 40-column format we're using for the Apple II. So, as a
solution for these problems, we've set up a special Big Number subrou¬
tine:

1325 REM BIG NUMBER SUBROUTINE (133D-137D)

40 TAIPAN: A Historical Adventure for the Apple Computer

1330 IF ABS 02) < lEb THEN PRINT INT 02) i:

NORMAL:

PRINT "

RETURN

1331 IF ABS 02) < 1ET THEN (2 = (2 / lEb:

(2$ = "MIL":

GOTO 1335

133E IF ABS 02) < 1E1E THEN (2 = (2 / 1ET:

(2$ = "BIL":

GOTO 1335

1333 IF ABS 02) > = 1E1E THEN Q = Q / 1E1E

(2$ = "TRL":

GOTO 1335

1335 PRINT INT 02) =,(2$:. :

NORMAL:

PRINT n

1337 RETURN

1340 FOR I = IE TO Ifl

1345 HTAB 1

1350 VTAB I:

PRINT A$=,

13b0 NEXT I

13bS PRINT:

To Market, To Market . . CHAPTER SIX 41

VTAB 15

1370 RETURN

Look back at line 140. There we set the value of variable Q to equal C
(our cash). We did this just before GOSUBbing 1330. The Big Number
subroutine takes this value held temporarily in Q and, if the number is
less than one million (or negative one million), simply prints it in neatly
formatted style.

If the number is a positive or negative number of at least one million
and less than a billion, the number is formatted so that . . .

In 543-,144-, 415

. . . would come out looking like:

134.SMIL.

Numbers in the billions and trillions are handled in a similar manner
by the Big Number subroutine. The abbreviations "MIL.", "BIL." or
"TRL." are shown in reverse video to catch the player's eye.

Negative numbers will be indicated by a minus sign (-) to their left.

The way the Big Number subroutine handles astronomical-sized quan¬
tities gives the player meaningful information without making havoc of
our display with numbers which get too long for the space we have avail¬
able. We use the Big Number subrouting three times in line 140 alone,
and we'll be calling on it to help us with other potentially huge numbers
whenever we need to.

So, in line 140 we've printed our cash (originally four hundred), the
number of guns with which our vessel is equipped (one for starters), our
debt to Elder Brother Wu (one thousand as the game begins), and the
available hold capacity of our vessel (fifty thus far). Line 141 next displays
a bright bar across the screen, with the words, "GOODS", "ABOARD
SHIP", and "HONGKONG GODOWN" in reverse video embedded in
the bar. (Hongkong is where our only godown — warehouse — is
located.)

42 TAIPAN: A Historical Adventure for the Apple Computer

The last line of our Main Display subroutine is:

ISO FOR I = □ TO 5:

VTAB 5 + I:

PRINT G$(I) :

VTAB 5 + I:

HTAB 11:

PRINT CHR$ (133)^:

Q = SG(I) :

GOSUB 1330:

VTAB S + I:

HTAB Eb:

PRINT CHR$ (133) ; :

a = GG(I) :

GOSUB 1330:

NEXT I:

INVERSE:

PRINT A$:

NORMAL:

RETURN

This line displays the quantities of goods we have aboard ship and in
our Hongkong godown.

We start a loop, incrementing from 0 to 5. Within the loop, we first
"VTAB 5 + 1", and then "PRINT G$(I)". This method allows us to show
G$(I), the names of the trade items, in neat columns, one item name to a
line. Then another VTAB and an "HTAB 11" put our cursor eleven
columns to the right, so that it displays vertical bars, CHR$(133), to the
right of the item names. Next, the first call of the Big Number subroutine
(GOSUB 1330) formats the numbers of items aboard ship. Then we go
over a few more columns with another VTAB and HTAB, and display
another vertical bar, with the Big Number subroutine now formatting the
numbers for the amount of each item stored in our godown. After we've
displayed information on all our goods aboard ship or stored, the NEXT I
ends the loop. We then do an INVERSE, and print a thick bright horizon¬
tal bar (A$) on the next line. Last, we execute NORMAL, and RETURN
from the subroutine.

To Market, To Market CHAPTER SIX 43

Okay. Now we've finished our Main Display, and have RETURNed to
line 120. Line 120 immediately sends us away with "GOTO 220". (This
time we seem to have outstayed our welcome — we're kicked off the
premises without so much as a "y'all come back, hear?")

Lines 220 and 221 start our Market routine:

212 REM MARKET (220-350)

21? REM MARKET PRICES (220-221)

220 G0SUB 7T0:

G0SUB 1340:

VTAB 11:

INVERSE:

HTAB fl:

PRINT " niL$(L)^" MARKET PRICES ":

NORMAL:

PRINT A$:

FOR I = 0 TO 4 STEP 2:

VTAB 13+1/2:

HTAB l:

PRINT G$(I)=,:

HTAB 10:

PRINT GP(I) i:

HTAB 21:

PRINT G$(I + 1)=,

221 HTAB 30:

PRINT GP(I + 1):

NEXT I

What have we done here? First, we called the Events subroutine which
starts at 790. The Events subroutine is used to present a variety of hap¬
penings and opportunities which may come up from time to time. Since
we will discuss the Events subroutine in a later chapter, let's for the

44 TAIPAN: A Historical Adventure for the Apple Computer

moment assume that we've already RETURNed from there. After the
GOSUB, line 220 displays the thick bright bar, A$, then name of the port,
followed on the same line by the words, "MARKET PRICES".

A loop is then started, with the variable "I" being incremented from 0
to 5. Within the loop, we print two item names and their formatted prices
on each of three lines. (Note the fancy footwork with HTAB and VTAB
values. These allow us to keep things neat on the screen.)

Line 230 of our Market routine is simple:

EES REM MARKET MENU

S3D PRINT:

VTAB Ifi:

PRINT " B)UVi S) ELL n DEAVE-, OR R) ETIRE?"

Here we have our Market Menu. We emphasize the first letters of each
choice, because the player will choose by pressing the appropriate letter.

Lines 240 to 244 are the Market Menu Input routine, and actually han¬
dle the player's choices.

E3S REM MARKET MENU INPUT (E40-E44)

S4D GOSUB b0:

IF X$ = "B" THEN T$ = "BUY":

X = 1

E41 IF X$ = "S" THEN T$ = "SELL":

X = E

E4E IF X$ = "L" THEN 3b0

S43 IF X* = "R" THEN 1300

To Market, To Market.... CHAPTER SIX 45

244 IF X* <> "B" AND X* <> "S" AND X* <> "L" AND X* <>

"R" THEN GOSUB 77Q:

GOTO 240

Since line 240 needs our Get String subroutine at 60 to work, let's
examine that, too:

55 REN GET* SUBROUTINE (b0-b4)

tD POKE - lb3ba-.0

bl IF PEEK (- Ib3fl4) < lEfi THEN bl

fe.2 X* = CHR* (PEEK (- 1U3A4) - ISA)

L3 POKE - lt>3tai□

fc.4 RETURN

A reasonable person might ask why we need the Get String subroutine
to handle simple input, rather than just using an INPUT statement. The
main reason we're using this subroutine is that we are thus able to
"screen out" undesired input.

The most common form of undesired input is the accidental input of
options. Sometimes even veteran players will become inattentive and
will press a key which is incorrect. (One possibility is that the player
will make an option choice which is legitimate only as an option in
another menu.)

The Market Menu Input routine takes the player's input and checks it
for legitimacy. If the input is not proper, the program routes to a subrou¬
tine at line 770, where a short beep is sounded to make the player aware
of the error.

46 TAIPAN: A Historical Adventure for the Apple Computer

Here's the Input Error subroutine, line 770:

7bS REM INPUT ERROR SUBROUTINE (770)

770 PRINT "aG"1-,:

RETURN

[Note: "aG" is the "beep" character. It is typed by first pressing the
"control" key, then pressing the "G" while the "control" is still down.
Don't expect it to look like "aG" on your screen listing or program print¬
out, however!]

On the other hand, if the input is legitimate, in other words, one of the
letters indicted as options in the Market Menu (B, S, L or R), the routine
then processes the input and routes the program's flow in order to make
the right things happen in response.

Now let's go into the Market Menu Input routine and the Get String
subroutine in detail.

Line 240 immediately GOSUBs to the Get String subroutine at 60. Our
Get String subroutine is one of our most-used routines in Taipan. First,
line 60 empties the contents of the keyboard buffer (POKE -16386). This
clears any keystrokes from your Apple II, and ensures that any previous
keyboard input isn't confused with new input. (The Get String subrou¬
tine will look at the last character typed.) Next, in line 61, the statement
"IF PEEK (-16384,) < 128 THEN 61" is run. This causes the program to
loop back to the beginning of the same line unless a key is pressed on the
keyboard. Then line 62 sets the contents of X$ to equal the character in
the keyboard buffer: "X$ = CHR$ (PEEK (-16384)-128)". This makes
the contents of X$ equal to whatever key on the keyboard has been
pressed last.

The Get String subroutine checks to see if any keys have actually been
pressed. If not, line 61 is restarted at its beginning. But if a key has been
pressed, we RETURN to line 240, with X$ holding the character corres¬
ponding to the key which the player pressed.

Now lines 240 to 244 have to examine the contents of X$, and make
something happen. Here's how:

If X$ holds the letter "B" (for Buy), then line 240 puts the word, "BUY"
into T$, and sets the numerical variable, X, to a value of 1.

To Market, To Market . . CHAPTER SIX 47

(We're using X in this routine as a so-called "flag". A variable is consid¬
ered a flag when it is used later in a program to indicate something which
happened previously. Here, "X = l" means "buy". We don't want to use
X$ as a flag, because we'll soon use it to hold other characters.)

But if X$ doesn't hold a "B", line 241 continues to check what it might
hold. If X$ contains an "S" (for Sell), then T$ is loaded with the word,
"SELL", and the "X" flag is set to 2.

But that might not be the case, either — after all, there are lots of keys
on a keyboard! So line 242 keeps checking. If the contents of X$ is the let¬
ter "L" (for Leave), the program jumps to line 360, where the Other
Options routine is located. (We'll get to that routine, also, in a later chap¬
ter — trust us.)

If we pressed a key other than B, S or L, line 243 checks to see if the key
we pushed is an R (for Retire). If so, the program flow jumps to the That's
All Folks routine at line 1300.

But what if we had pressed none of the keys covered by this routine
(neither the B, S, L or the R key)? In that case, line 244 has the computer
GOSUB to line 770, the Input Error subroutine, where a short routine
plays that beep tone we mentioned earlier. Then the computer starts out
at the beginning of line 240 all over again, hoping upon hope that the
next key pressed will make sense to it.

In only two cases, the program will simply drop through to line 250,
the start of the Buy/Sell routine. That will, naturally, happen only if a B or
an S is pressed.

The Buy/Sell routine allows items to be bought and sold. (What else
did you expect?) It handles choices of trade goods, handles the input of
the amounts to be bought or sold, checks whether the player has suffi¬
cient cash when buying, or sufficient numbers of goods to be sold. The
Buy/Sell routine checks for almost any kind of error in input, and pre¬
vents certain kins of "cheating" by the player. It uses a special number
input subroutine which resists scrolling and allows the player to buy
"all" he or she can afford of an item by simply pressing the letter "A", or
sell "all" by pressing the same key. After each transaction, the Main Dis¬
play subroutine is run in order to update the amounts of trade goods
held by the player, and the player's cash on hand. Also after every pur¬
chase or sale, the player is returned to the Market Menu and Market
Menu Input routines. The Buy/Sell routine is designed to be compact. To
use as little memory as possible, it makes multiple use of as many lines as

48 TAI PAN: A Historical Adventure for the Apple Computer

possible. There are lines, for instance, which handle either the buying or
the selling of any of the six items of trade, while other lines handle other
buying or selling functions.

This is the start of the Buy/Sell routine:

245 REM BUY/SELL (25U-351)

2M7 REH ITEM MENU (250)

250 VTAB Ifi:

PRINT A$i:

VTAB Ifi:

HTAB 3:

PRINT T$=," "^TCSi"?":

GOSUB 2b0:

GOTO 2fl0

If you recall (and even if you don't), A$ is a line of 40 spaces. We print it
at position VTAB 18 on the screen, in order to clear what we had there
before, the Market Menu. Next, using HTAB 2 to move over two
columns, we print T$, which we've just made to contain either the word
"BUY" or the word "SELL". After T$, we display a space, followed by
TC$, then a question mark. We previously put the first letters of each of
our trade items into TC$, back in line 10 during initialization. So what we
get on the screen is either . . .

BUY 0-. S-. Ti A-. P OR Rf

or . . .

SELL 0-, Si T-, Ai P OR Rf

Since we don't have nearly enough room to spell this prompt out in
whole words, like "SELL OPIUM, SILK, TEA, ARMS, PEPPER OR
RICE?", and those words are written right above in the Market Prices, the
letters will suffice.

To Market, To Market CHAPTER SIX 49

Just as we did in the Market Menu Input routine, we now have to take,

and process, the player's input. So lines 260 through 270 will be our Item

Choice subroutine. Since we'll have other places in the program where a

choice of items will be needed, we want to make this a subroutine, rather

than having similar lines scattered throughout the program. For the same

reason, it's also useful to make the Item Choice subroutine as general¬

ized, and therefore as flexible, as possible. (It often seems that the reali¬

ties of memory-conscious programming conspire against "elegant",
top-down programming.)

Here is our Item Choice subroutine:

ESS REN iteh CHOICE SUBROUTINE (Sb0-E70)

EbO GOSUB b0:

IF X$ = "0" THEN XI = □

Ebl IF X$ = "S" THEN XI = 1

SbE IF X$ = "A" THEN XI = 3

Eb3 IF X$ = ft p n THEN XI = 4

EbS IF X$ = "R" THEN XI = S

Ebb IF X$ <> "0" AND X$ <> "S" AND X$ <> "T"

"A" AND X$ <> "P" AND X$ <> "R" THEN GOSUB 770:

GOTO EbO

E70 RETURN

Our Item Choice subroutine first GOSUBs to the Get String Subrou¬

tine at 60, and gets an input from the keyboard, just like in our Market

Menu Input routine at 240. It then sets the variable XI as a flag to identify

the chosen item. If an invalid key is pressed, the program GOSUBs line

770, the Input Error subroutine, to signal the player to "watch it, buster!"
Much like lines 240 through 244, isn't it?

50 TAI PAN: A Historical Adventure for the Apple Computer

Here's a review of the lines we've used in this chapte:

55 REM GET$ SUBROUTINE (L0-L4)

LO POKE - 1L3LA -iO

LI IF PEEK (- 1L3A4) < lEfl THEN LI

LE X$ = CHR$ (PEEK (- 1L3S4) - lEfl)

L3 POKE - lt>3Ld 10

L4 RETURN

115 REM MAIN DISPLAY (1E0-150)

iao GOSUB 130:

GOTO ESO

130 VTAB 1:

HTAB l:

PRINT "PORT n’iL*(L)i:

HTAB Efl:

PRINT "iDA + 1 i"t"iY

140 VTAB E:

INVERSE:

PRINT "CASH "*i:

a = C:

GOSUB 1330:

NORMAL:

VTAB E:

HTAB Efl:

PRINT "GUNS "nG:

To Market, To Market . . CHAPTER SIX 51

VTAB 3:

PRINT "DEBT "=,:

a = D:

GOSUB 1330:

VTAB 3:

HTAB 26:

PRINT "HOLD "i:

a = SH:

GOSUB 1330

141 VTAB 4:

INVERSE:

PRINT "GOODS ABOARD SHIP HONGKONG GODOtiJN":

NORMAL

ISO FOR I = 0 TO 5:

VTAB S + I:

PRINT G$(I):

VTAB S + I:

HTAB 11:

PRINT CHR$ (133):,:

a = SG(I):

GOSUB 1330:

VTAB S + I:

HTAB BL>:

PRINT CHR$ (133):,:

a = GG(I):

GOSUB 1330:

NEXT I:

INVERSE:

PRINT A$:

NORMAL:

RETURN

52 TAIPA N: A Historical Adventure for the Apple Computer

E1E REM MARKET (EEQ-3SQ)

E17 REM MARKET PRICES (EED-EE1)

BED GOSUB 710:

GOSUB 134Q:

VTAB 11:

INVERSE:

HTAB fi:

PRINT " MARKET PRICES

NORMAL:

PRINT A$:

FOR I = D TO 4 STEP E:

VTAB 13 + I / E:

HTAB l:

PRINT G$(I)i:

HTAB IQ:

PRINT GP(I) i:

HTAB El:

PRINT G*(I + Di

ESI HTAB 30:

PRINT GP(I + 1) :

NEXT I

EES REM MARKET MENU (E3D-E44)

E30 PRINT:

VTAB lfi:

PRINT " B)UY-, S) ELL n L)EAVE-> OR R) ETIREf"

E3S REM MARKET MENU INPUT (E4Q-E44)

To Market, To Market . . CHAPTER SIX 53

240 GOSUB fc.0:

IF X$ = "B" THEN T$ = "BUY":

X = 1

241 IF X$ = "S" THEN T$ = "SELL":

X = 2

242 IF X$ = "L" THEN 3U0

243 IF X$ = "R" THEN 1300

244 IF X$ <> "B" AND X$ <> "S" AND X$ <> "L" AND X$

<> "R" THEN GOSUB 770:

GOTO 240

247 REfl ITEM NENU (250)

250 VTAB Ifl:

PRINT A$ ^:

VTAB Ifl:

HTAB 3:

PRINT T$i" "iTCS^"?":

GOSUB 2U0:

GOTO 260

255 REN. ITEN CHOICE SUBROUTINE (2U0-270)

2L>0 GOSUB UO:

IF X$ = "0" THEN XI = 0

2bl IF X$ = "S" THEN XI = 1

54 TAI PA N: A Historical Adventure for the Apple Computer

EbE IF X$ = "A" THEN XI = 3

Eb3 IF X$ = "P" THEN XI = 4

Eb5 IF X$ = "R" THEN XI = 5

Ebb IF X$ <> "0" AND X$ <> "S" AND X$ <> nT" AND X$

<>"An AND X$ <> "P" AND X$ <> "R° THEN GOSUB 770:

GOTO SbO

E70 RETURN

7bS REN INPUT ERROR SUBROUTINE (770)

770 PRINT "*G"t:

RETURN

[Note: "aG" is the "beep" character. It is typed by first pressing the
"control" key, then pressing the "G" while the "control" is still down.
Don't expect it to look like "aG" on your screen listing or program print¬

out, however!]

13ES REN BIG NUNBER SUBROUTINE (1330-1370)

1330 IF ABS ((3) < lEb THEN PRINT INT

NORNAL:

PRINT n

RETURN

1331 IF ABS ((2) < 1ET THEN (2 = <3 / lEb:

,3$ = "MIL":

GOTO 1335

To Market, To Market. . CHAPTER SIX 55

1332 IF ABS (<3) < IE 12 THEN Cl = <2 / 1E5:

C3$ = "BIL":

GOTO 1335

1333 IF ABS 02) > = 1E12 THEN Q = (2 / 1E12:

(2$ = "TRL":

GOTO 1335

1335 PRINT INT (<3)M2$i:

NORMAL:

PRINT "

1337 RETURN

1340 FOR I = 12 TO Ifi

1345 HTAB 1

1350 VTAB I:

PRINT A$i

13U0 NEXT I

13U5 PRINT:

VTAB 12

1370 RETURN

So, to sum up what we've done in this chapter:

Line 120 sent the program to the Main Display subroutine, starting at
130. The Main Display subroutine (lines 130 to 150) displays a whole mess

56 TAI PAN: A Historical Adventure for the Apple Computer

of important information on the screen, like where we are, what we've

got with us, what day it is, etc.

After RETURNing from the Main Display subroutine, line 120 sends us
to the Market routine starting at line 220. The first portion of the Market
routine is the Market Price routine, which first GOSUBs to the Events
subroutine at 790, then displays how much each item costs. Continuing
the Market routine, line 230 is our market Menu routine, displaying
options. Lines 240 to 244 are the Market Menu Input routine. They han¬
dle the player's choices, working with the Get String subroutine at line
60, and the Input Error subroutine at line 770. With correct input, the
program then goes to the lines covered in the next chapter, which are at
the heart of our game, lines which handle the trading process itself.

Canton-Commissioner Lin burns opium

>■
■■

M
k

T A I P A N
A Historical Adventure for the Apple® Computer

Cash on the Barrelhead
CHAPTER SEVEN

At the end of the last chapter we either told the computer that we wanted
to buy, or that we wished to sell. We also chose the item we wished to
deal with. The Market routine continued after the Item Choice subrou¬
tine (lines 260 through 270) RETURNed program flow to the end of line
250 (the first line of the Buy/Sell routine). Line 250 finally sent us away
with GOTO 280.

Here's line 280:

2fl0 IF X=1 AND GP(X1) > C THEN VTAB Ifl:

PRINT "YOU CAN’T AFFORD ANY "G$(XD".

G0SUB 7b0:

GOTO 230

Line 280 first checks to see if two things are true: that we're both try¬
ing to buy an item and that we don't have enough cash to buy a single
unit of that item. If both of these things are true, we are told that we can't
afford any of this item, we GOSUB 760 to play a note to underscore our
error, and we RETURN to our Market Menu at 230.

59

60 TAI PAN: A Historical Adventure for the Apple Computer

Thus line 280 only operates if we're trying to buy something we can't

afford.

If you were to walk into a real estate office, a smiling agent might ask
whether you wanted to buy or sell property.

You might reply: "I'd like to buy some real estate, I do believe, if it is

not too much trouble."

"No trouble at all. I live to serve," says the agent, wringing his/her
hands in anticipation of commission points. The agent gestures at
shoeboxes full of real estate deeds. (Each is marked with a single initial

letter.)

The agent says, "We handle the finest in Shanties, Cabins, Bungalows,
Houses, Mansions and Palaces. In which category are you interested?"

You answer: "Uh, I think your 'Palace' category would suit me fine

today, thank you so very much, please."

Now, at this point it is an exceedingly remote possibility that the real
estate agent would just grab a boxful of deeds marked with a P , and
ask, "And exactly how many Palaces would you like?"

It's much more likely that the agent will attempt to "qualify" you. In
other words, the agent will question you in depth, trying to determine
whether you can afford even a single Palace.

That's what line 280 does. It "qualifies" the player for the purchase.

Line 290 does a similar check:

210 IF X = 2 AND SG(X1) < 1 THEN VTAB Ifl:

PRINT "YOU HAVE NO "G$(Xl)n ABOARD!

G0SUB 7t0:

GOTO 230

All line 290 does is to check whether you're trying to sell something
you don't have. (Keep that deed for the Brooklyn Bridge in your pocket!)

Line 760, the No-Can-Do subroutine, both plays a note and calls the
Delay subroutine, starting at line 780. Here's both of those subroutines:

Cash on the Barrelhead: CHAPTER SEVEN 61

755 REN NO CAN DO SUBROUTINE (7b0)

7b0 PRINT "aG":

GOSUB 7fl0:

RETURN

[Note the "aG" in line 760. Remember, it is typed in by first pressing the
Control key, then pressing the "G" key while the Control is still pressed.]

775 REN DELAY SUBROUTINE (7A0-7A3)

7 A0 POKE - ltiBla A 1 □

7A1 FOR I = 0 TO 250

7 A2 IF PEEK

POKE -

RETURN

(- 1L3A4) >

lb3tiA t 0:

127 THEN

7 A3 NEXT I:

RETURN

Actually, line 760 (our No-Can-Do subroutine) is much like the Input
Error subroutine we already introduced, line 770. The difference is that in
line 760, we also use the Delay subroutine at lines 780 to 783.

The Delay subroutine is a handy and "user-friendly" little scrap of pro¬
gramming. It's used to purposely slow down the computer whenever we
are giving the player a brief message. It gives the player plenty of time to
read the message. But since some folks read faster than others, the Delay
subroutine gives the player the option of simply pressing the spacebar of
the computer in order to end the-message. This can considerably speed
play, especially when the player becomes familiar with some of the more
common brief messages. Notice that a "FOR...TO...NEXT" loop is used
just to eat up time, while constantly checking to see if the spacebar is
pressed. If either the variable I becomes incremented to 250 or the space¬
bar is pressed, the subroutine RETURNS.

62 TAIPAN: A Historical Adventure for the Apple Computer

The way that the program detects the spacebar is with PEEK and
POKE statements. A full explanation would be very technical, but the
nitty gritty is that these statements clear out the keyboard buffer, then
look for input. When the spacebar is pressed, line 782 RETURNS us from
the subroutine, even if the alloted time hasn't run out.

With lines 280 and 290 we screened out both too-poor buyers and
empty-handed sellers. Now that we've banished the riff-raff, we can
really start doing business with our next line, 300:

300 VTAB Ifl:

PRINT A$i:

VTAB Ifl:

PRINT T$=," HOW MUCH "AGSCXDi:

PRINT "?

NUN* =

NUH = 0:

G0SUB 310:

GOTO 3E0

You'll recall that we put either "BUY" or "SELL" into T$ back in lines
240 through 244, our Market Menu Input routine, and that XI is used as a
flag to indicate the type of item we're dealing with. Thus, line 300 can ask
any of twelve questions. It can ask the player how much of any one of six
items should be either bought or sold.

Next, the line makes sure that the string variable, NUM$, is empty.
This is important, because we'll be using NUM$ to collect keyboard input
in a moment. Likewise, the numerical variable, NUM, is set to zero.

Line 300 then GOSUBs to 310, where we start perhaps the trickiest rou¬
tine in the game, the Sooper Dooper Number Scooper subroutine:

305 REI1 SOOPER DOOPER NUNBER SCOOPER SUBROUTINE

(310-314)

310 PRINT CHR* (fl)i:

Cash on the Barrelhead: CHAPTER SEVEN 63

INVERSE:

PRINT "

NORMAL:

GOSUB bO:

IF LEN (NUMS) > 0 AND ASC (X$) = A THEN PRINT XS=,:

PRINT"

PRINT X$nX^:

PRINT"

FG = 1:

IF LEN (NUMS) = 1 THEN NUMS = "":

FG = D:

GOTO 310

311 IF FG = 1 THEN NUMS = LEFTS (NUPIS-. LEN (NUMS) -

1) :

FG = 0:

GOTO 310

312 IF ASC (X$) = b5 OR ASC (X$) = 13 THEN RETURN

313 IF ASC <X$) < 4 A OR ASC (XS) > 57 THEN 310

314 NUMS = NUMS + X$:

PRINT CHRS (A)^XSi:

INVERSE:

PRINT " "*:

NORMAL:

GOTO 310

Looks nasty, huh? Actually, it's fairly simple. Like filling out tax return
forms is "simple", that is . . . But however complex it might seem, it sim¬
plifies input for the player. If the Delay subroutine was "user-friendly",
the Sooper Dooper Number Scooper is downright fresh!

64 TAIPAN: A Historical Adventure for the Apple Computer

Let's first explain what it is we want this subroutine to do:

We need a routine which will allow us to enter numbers into the com¬
puter. We'd like to be able to have a special key, the letter A, which will
allow us either to buy all of an item which we can afford, or to sell all of
an item which we have aboard ship.

Further, we'd like to filter out any accidental input of non-numeric
keys (except "A"), and especially to prevent the players from putting a
minus sign in front of their numbers. (This could be a form of "cheating .
A player could "buy" a negative amount of a item, thus actually getting
cash and making the player's ship lighter!)

Other things it'd be nice to do are to have the numbers input by the
player print on the screen, and to allow the player to "back up using the
"back-arrow" key to correct mistakes. Let's also throw in a cursor, since
folks expect to see one of those things. Finally, we'd like to get out of the
Sooper Dooper Number Scooper subroutine either by pressing
"RETURN", or by using the "A" key.

We've crammed features for handling all of this wild and crazy stuff

into this routine.

Yes, it was hard to write — but not nearly as difficult as explaining it.

Here's our attempt:

First, we have PRINT CHR$ (8). CHR$ (8) is the "backspace" character.
So, wherever we've positioned the invisible cursor prior to using this
subroutine for number input, it's moved back one space. A bright block
(an INVERSE space: '■') is then displayed as a visible "artificial" cursor.
Notice that we leave a semicolon (;) after the cursor, so the computer will
print its next character on the same line, just after the cursor, rather than
on the next line. (The computer can be made not to display its own cur¬
sor, but it always has at least an invisible cursor it keeps track of, so it
knows where to PRINT next.) After displaying the INVERSE-space cur¬
sor, we NORMALize the display.

The next thing line 310 does is to GOSUB line 60. That is our Get String
subroutine, which we earlier explained. It's enough for now to remember
that line 60 puts characters from the keyboard into X$.

When a key is pressed, the Get String Subroutine RETURNS us to line
310. Now we have the statements: IF LEN (NUM$) > 0 AND ASC
(X$) = 8 THEN PRINT X$;: PRINT " PRINT X$;X$;:. This part of the
Sooper Dooper Number Scooper subroutine allows the player to back-

Cash on the Barrelhead: CHAPTER SEVEN 65

space the cursor to delete any number that might have been typed by
mistake. It first checks that NUM$ (which holds the accumulated charac¬
ters from the keyboard in string, rather than numerical form), has a
LENgth greater than zero — that it has something in it, in other words.
This check is done because otherwise we might backspace too far to the
left. Since this portion of the line will operate only if numbers are already
displayed and a back-arrow is pressed, X$ would at this point naturally
contain a back-arrow, or backspace, character. We have to print a space
character (" ") next, to delete our "artificial” cursor. We then have to
backspace twice more (PRINT X$;X$;), in order to put our "artificial cur¬
sor" just to the left of the digit we want to erase in the first place. Next,
we have to print another space, to actually delete that digit.

Okay. So we've been able to delete an unwanted digit from the screen.
But we've still got to get it out of the computer's memory. We then set a
flag variable to a value of one (FG = 1). (We use this flag to remind the
program that we're shortening the length of NUM$.) The next statement
is: IF LEN (NUM$) = 1 THEN NUM$= "". That statement simply says
that if the length of the string, "NUM$" is one character, then we'll make
it zerq characters long. So now what we see is really what we get. Next,
we reset the flag, FG, to zero, it having served its purpose. And finally,
having corrected the last mis-typed digit, we GOTO the top of line 310, so
we can begin typing in new characters.

Line 311 works much like the last three statements in line 310, except it
operates in a situation where there is already more than one digit con¬
tained in NUM$. NUM$ will have its right-most character cut off. In
other words, the last character entered will be nipped out of NUM$.

Got that? If so, please explain it to us. (Just kidding, folks!)

If we haven't pressed the back-arrow, the next part of the Sooper
Dooper Number Scooper subroutine, line 312, checks to see if we've
pressed either the "A" (character 65) or the "RETURN" key (character 13).
This statement is the only way out of the subroutine. If either of these
keys were pressed, program flow RETURNS from the subroutine to
where it came from - in this case, line 300. (Afterward, as we'll soon
show, line 300 sends us to routines starting at 330, where either the num¬
bers held in string form in NUM$, or that "A" get processed further.)

If we've pressed neither "back-arrow," "A," nor "RETURN," the next
part of the routine, line 313, screens the input to make certain that we've
at least pressed one of the number keys: "IF ASC (X$) < 48 OR ASC (X$)
> 57 THEN 310". Since the ASCII value of the characters for the num-

66 TAI PAN: A Historical Adventure for the Apple Computer

bers zero through nine run from 48 to 57, this line simply routes us back
to square one, restarting the line at the top, if any non-numeric keys
(other than "back-arrow", "A" or "RETURN", which were already taken

care of) were pressed.

Now, in line 314, we see how NUM$ gets those number characters into
it: "NUM$ = NUM$ + X$". This adds the last number character from the
keyboard (X$) to the right end of the string contained in NUM$. Since
this is the only way anything can get into NUM$, NUM$ will only hold
number characters.

After that, we have "PRINT CHR$ (8);X$;'\ This uses the backspace
character (8) to erase the existing "artificial" cursor, then prints X$, which
will display a numerical digit in the old cursor's place. Then we have
another INVERSE space to serve as a cursor, and NORMAL to make
screen printing, well . . . normal.

Finally, we have a "GOTO 310", which takes us to the top of line 310, so
the player can add more digits to the number or finish by pressing

"RETURN".

That's the Sooper Dooper Number Scooper.

Let's assume the player has pressed either "A" or "RETURN", and
we're back at line 300.

Following the "GOSUB 310" in line 300, is "GOTO 320". Lines 320
through 335 continue with gathering the quantity to be bought or sold.

Let's look at 'em:

320 IF X = 1 THEN IF X$ = "A" THEN PRINT CHR$ (fl)*,:

INVERSE:

PRINT "ALL"i:

NUN = INT (C / GP(XD)

321 IF X = 1 AND X$ <> "A" THEN NUM = VAL (NUM$)

330 IF X = 2 THEN IF X* = "A" THEN PRINT CHR* <fi)i:

INVERSE:

PRINT "ALL"i:

NUN = SG(X1)

Cash on the Barrelhead: CHAPTER SEVEN 67

331 IF X = 2 AND X$ <> "A" THEN NUN = VAL (NUN$)

335 NORMAL

Line 320 through 335 convert the output of the Sooper Dooper Num¬
ber Scooper subroutine into quantities of goods to be bought. The first
part of line 320 checks if we are buying (X = 1), and whether the last key
we pressed is an "A". If both these things are true, it backspaces the
invisible cursor, then briefly prints the word "ALL" in inverse video. The
last portion of line 320, "NUM = INT (C / GP(X1))", sets the value of the
numerical variable NUM to equal the largest affordable whole number of
the item the player wishes to buy. It does this by dividing the player's
cash by the unit price of the chosen item and then using the INT function
to round off the result to a whole number. (Throughout Taipan, we'll
force the computer to nearly always output quantities as whole numbers,
and to always accept only whole numbers as inputs. This neatens the
screen, simplifies play, and does nothing to hurt "realism".)

Line 321, "IF X = 1 AND X$ < > "A" THEN NUM = VAL (NUM$)",
operates when we are buying and we have not pressed the "A" key. It
converts the string contents of NUM$ into a quantity to be stored in
numerical variable NUM.

A similar process goes on in lines 330 and 331, but only if we're selling
cargo items. The first part of line 330 works just like the beginning of line
320, so we'll skip over that. The last part, which operates if the player has
pressed "A", is "NUM = SG (XI)". This puts a number equal to all of our
shipboard quantity of the chosen item into the variable NUM.

Line 331 operates if we're selling, and have input numbers (instead of
pressing "A") via the Sooper Dooper Number Scooper. This works just
like a line 321, converting numbers in the string NUM$ to the variable,
NUM. Finally, we use NORMAL to stop displaying in INVERSE mode.

This ends our Transaction Quantity routine.

After lines 320 through 330, we now have the quantity of goods to be
bought or sold, stored in NUM. Lines 340 to 341, and 350 to 351 of our
Market routine respectively finish the transaction of buying or selling
items. Here are those last four lines of the Market routine:

68 TAI PAN: A Historical Adventure for the Apple Computer

3M0 IF X = 1 THEN IF NUU * GP(X1) > C THEN PRINT:

VTAB Ifl:

PRINT "YOU CAN'T AFFORD SO riUCH! "i:

GOSUB 7b0:

VTAB 16:

PRINT A$i:

GOTO 3DD.

341 IF X = 1 AND NUU * GP(X1) < = C

THEN SG(X1) = SG(X1) + NUU:

SH = SH - NUN:

C = C - GP(X1) * NUM:

GOSUB 130:

GOTO 230

350 IF NUN > SG(X1) THEN VTAB 16:

PRINT A$i:

VTAB 16:

PRINT "YOU DON’T HAVE THAT NUCH! "i:

GOSUB 7b0:

VTAB 16:

PRINT A$i:

GOTO 300

351 SG(X1) = SG(X1) - NUN:

SH = SH + NUN:

C = C + (NUN * GP(X1)):

GOSUB 130:

GOTO 230

Line 340 first makes certain we're buying. If we're selling cargo, the
rest of the line is skipped. (A similar check would prevent line 341 from
operating.) It then checks if we're ordering more than we can pay for. If

Cash on the Barrelhead: CHAPTER SEVEN 69

we can't afford the quantity we've input, it tells us we can't afford that
amount, GOSUBs to the No-Can-Do subroutine at 760, clears the mes¬
sage it's just given us using A$ (a line of 31 spaces), and goes back to line
300 to ask us once again how much we want to buy.

But if we're buying and can afford the quantity we've asked for, line
341 comes into play. The shipboard amount of that item, SG(X1), is
increased by the quantity in the variable NUM. The available cargo space
aboard ship (SH) is decreased by NUM, and the player's cash (C) is low¬
ered by the price of the chosen item, multiplied by the amount the player
requested. Line 341 then GOSUBs 130 to update the Main Display to
show how much cargo and money we now have, and finally goes back to
the Market Menu and the reset of the Market Option routine, with
GOTO 230.

Lines 350 and 351 are the flip side of the proposition, and handle sell¬
ing in about the same way that 340 and 341 handled buying.

Since if we were buying, the program flow wouldn't have gotten this
far, we don't have to check to make sure we're trying to sell. To get to line
340, we'd have to be selling something. Line 350 therefore first checks to
see if we're trying to sell more of an item than we have aboard ship. If we
are, it tells us we don't have that much, GOSUBs to the No-Can-Do sub¬
routine, removes its message, then puts us back at line 300, where it can
again ask us how much is to be sold.

If the player does have at least as much cargo as has been input, NUM
is subtracted by line 351 from the amount of that item aboard ship, the
ship's available capacity is increased accordingly, the player's cash is
increased by the unit price of the item multiplied by the number sold,
and the Main Display is updated. Control is returned to the Market
Options routine starting at 230.

That, Dear Reader, is curtains for the Market routine, may it rest in
peace. It took us two chapters, but we are finally finished.

Here's a recap of the lines we've used in this chapter:

EflO IF X=1 AND GP(Xl) > C THEN VTAB Ifl:

PRINT "YOU CAN’T AFFORD ANY "G$(XD". :

G0SUB 7bD:

GOTO E30

70 TAIPAN: A Historical Adventure for the Apple Computer

ETO IF X = 2 AND SG(X1) < 1 THEN VTAB Ifi:

PRINT "YOU HAVE NO nG$(XD" ABOARD!

GOSUB 7b0:

GOTO E30

3DD VTAB Ifi:

PRINT A$^:

VTAB Ifi:

PRINT T$i" HOU MUCH niG$(Xl)i:

PRINT "f :

NUM$ =

NUM = □:

GOSUB 310:

GOTO 3E0

305 REM SOOPER DOOPER NUMBER SCOOPER SUBROUTINE

(310-314)

310 PRINT CHR$ (fl>*:

INVERSE:

PRINT " "i :

NORMAL:

GOSUB LO:

IF LEN (NUM$) > 0 AND ASC (X*) = fl THEN PRINT X$i:

PRINT" "i :

PRINT XiXi:

PRINT" "^:

FG=1:

IF LEN (NUM$) = 1 THEN NUM$ = "":

FG = 0:

GOTO 310

Cash on the Barrelhead: CHAPTER SEVEN 71

311 IF FG = 1 THEN NUM$ = LEFT$ (NUMS-. LEN (NUM$) -

1) :

FG = 0:

GOTO 310

313 IF ASC (X$) = bS OR ASC (X$) = 13 THEN RETURN

313 IF ASC (X$) < 4A OR ASC (X$) > 57 THEN 310

314 NUM$ = NUM$ + X$:

PRINT CHR$ (A)iX$‘, :

INVERSE:

PRINT n

NORMAL:

GOTO 310

330 IF X = 1 THEN IF X$ = "A" THEN PRINT CHR$ (A) i:

INVERSE:

PRINT "ALL"i :

NUM = INT (C / GP(XD)

331 IF X = 1 AND X$ <> "A" THEN NUM = VAL (NUM$)

330 IF X = 3 THEN IF X$ = "A" THEN PRINT CHR$ (A) i :

INVERSE:

PRINT "ALL" =i :

NUM = SG(X1)

331 IF X = 3 AND X$ <> "A" THEN NUM = VAL (NUM$)

335 NORMAL

72 TAI PAN: A Historical Adventure for the Apple Computer

340 IF X = 1 THEN IF NUN * GP(X1) > C THEN PRINT

VTAB Ifi:

PRINT "YOU CAN'T AFFORD SO MUCH! "i:

GOSUB 7b0:

VTAB Ifi:

PRINT A*:.:

GOTO 300

341 IF X = 1 AND NUM * GP(X1) < = C

THEN SG(X1) = SG(X1) + NUN:

SH = SH - NUN:

C = C - GP(X1) * NUN:

GOSUB 130:

GOTO E30

350 IF NUN > SG(X1) THEN VTAB Ifi:

PRINT A$i:

VTAB Ifi:

PRINT "YOU DON'T HAVE THAT NUCH!

GOSUB 7b0:

VTAB IS:

PRINT A$:

GOTO 300

351 SG(Xl) = SG(X1) - NUN:

SH = SH + NUN:

C = C + (NUN * GP(X1)) :

GOSUB 130:

GOTO 230

755 REN NO CAN DO SUBROUTINE <7L0)

Cash on the Barrelhead: CHAPTER SEVEN 73

7b0 PRINT "aG":

GOSUB 7fl0:

RETURN

[Note the "aG" in line 760. Remember, it is typed in by first pressing the
Control key, then pressing the "G" key while the Control is still pressed.]

775 REN DELAY SUBROUTINE (760-763)

760 POKE - 1L3L6-.0

761 FOR I = 0 TO 350

76E IF PEEK

POKE -

RETURN

(- lt>364) >

Ib3b6i0:

1S7 THEN

763 NEXT I:

RETURN

Here, in general, is what the lines in this chapter do:

Lines 280 and 290 "qualify" the player for buying or selling a chosen
item. The No-Can-Do subroutine at 760 (and, through it, the Delay sub¬
routine, 780) is called by these lines if the player tries to buy (280) an item
costing more per unit than the player's total cash, or sell (290) an item the
player doesn't have. Both lines route back to the Market Option routine
at 230 in these situations.

Line 300 asks the player how much of an item is to be bought or sold,
and GOSUBs 310 to the Sooper Dooper Number Scooper to allow the
input of the amount.

Lines 310 to 314 themselves GOSUB, to 60 (the Get String Subroutine).
They either collect numbers input from the keyboard, in which case

74 TAI PAN: A Historical Adventure for the Apple Computer

they RETURN to 300 after "RETURN" is pressed, or else take the letter
"A" (for "all") as an input, and RETURN with that. Also, these lines
screen out all but legitimate characters, and put an artificial cursor on the
screen.

When the Sooper Dooper Number Scooper is finished, line 300 then
GOTOs line 320, which, with line 321, handles buying. These lines proc¬
ess the "A" into an amount to be held in variable "NUM" if the "A" key
was pressed, or, if a number was input, process the string (NUM$), hold¬
ing the digits of the number, into "NUM".

Lines 330 and 331 do the same thing for selling which 320 and 321 did
for buying, putting a quantity into NUM.

Lines 340 and 341 either catch a player trying to buy more than cash will
allow, or complete the purchase transaction, update the screen, and take
the program all the way back to the Market Menu at 230.

T A I P A N
A Historical Adventure for the Apple® Computer

Keeping Our Other Options Open
CHAPTER EIGHT

Remember the Market Menu and the Market Option routines? They
allowed us to choose among Buying, Selling, Leaving and Retiring. We
have seen how buying and selling work. Now we'll look at what happens
when the player chooses "L" for "Leave".

We get to the Other Options routine when "IF X$ = "L" THEN 360"
operates in line 242. Here is the start of the Other Options routine:

355 REM OTHER OPTIONS <3tO-3Al)

3L.0 GOSUB 130:

GOSUB 1340:

VTAB 11:

INVERSE:

PRINT A$:

NORMAL:

PRINT " T) RADE n R) ECORDS":

77

78 TAIPAN: A Historical Adventure for the Apple Computer

IF L = 0 THEN PRINT " DENDER-, OODOtdN OR

EMIBARK?":

PRINT:

PRINT A$

3bl IF L <> □ THEN PRINT " OR E)MBARK?":

PRINT:

PRINT:

PRINT A$i

Line 360 first GOSUBs 130 to get an update of the Main Display, then it
uses the "Cleanup subroutine" to clear the area below the Main Display.
Since we'll be using the Cleanup subroutine often, let's see it now:

1336 REM CLEANUP SUBROUTINE (134Q-1370)

1340 FOR I = IE TO 16

1345 HTAB 1

1350 VTAB I:

PRINT

13b0 NEXT I

13b5 PRINT:

VTAB IS

1370 RETURN

All the Cleanup subroutine does is to print long lines of spaces (A$),
from VTAB 12 to VTAB 18.

Next, lines 360 and 361 show us a menu of options.

Keeping Our Other Options Open: CHAPTER EIGHT 79

This menu is set up to display two different versions — in Hongkong,
the menu will read:

T) RADE n RiECORDS-, UENDER-, G)0D0WN OR

E) IIBARKf

In any port o' call other than Hongkong, the menu will read:

TiRADE-, R) ECORDS OR EMBARK?"

Why the different menus in different ports? That's because only in our
home port of Hongkong will we find the Iron Lotus Triad moneylender.
Elder Brother Wu. Only there do we maintain a godown, or warehouse.

In lines 370 to 381 we continue the Other Options routine:

370 GOSUB GO:

IF X$ = "G" AND L = 0 THEN X = 1

371 IF X$ = "T" THEN 120

372 IF X$ = "R" THEN X

II ru

373 IF X$ = "L" THEN X
 ii U

J

374 IF X$ = "E" THEN 730

375 IF (X$ <> " G" OR L <> 0) AND X$

"R" AND X$ <> "L" AND X$ <> nE" THEN GOSUB 770:

GOTO 370

3A0 IF X = 3 AND L <> 0 THEN GOSUB 770:

GOTO 370

3A1 IF X <> 3 OR L = 0 THEN ON X GOSUB 3^0,GOO,470:

GOTO 3b0

80 TAIPAN: A Historical Adventure for the Apple Computer

Rather than always going into complete detail about programming
concepts we've covered before, the Authors will assume the reader has
learned (or already understood) methods used earlier. Since the above
lines are similar in concept to the Market Menu and the Market Option
routines, they'll require less explanation.

Line 370 uses the Get String subroutine (60) to take the player's input.
Then, if the player's location is Hongkong and the input is "G" (for
Godown), the flag X is given a value of 1.

In line 371, if the player had input a "T" (Trade), the program GOTOs
120 to update the screen, give the Market Prices, and the Market Menu.

Had the player input "R" (Retire), line 372 gives X the value of 2.

Likewise in line 373, if the input is "L" (Lender) the flag X is given a
value of 3.

An input of "E" (Embark) causes line 374 to GOTO 730, the Embark
routine.

In line 375, any input but the "legal" ones (G, T, R, L or E) are caught,
the player is given the Input Error tones, and line 370 is started again
from the top.

The Other Options input processing is concluded with lines 380 and
381. First line 380 checks to give the Input Error note and restarts line 370
if the player is outside of Hongkong but has tried to see the Lender.

Next, line 381 GOSUBs 390 if X = 1 (Godown), GOSUBs 600 if X = 2
(Retire), or GOSUBs 470 if X = 3 (Lender).

Finally, after whichever subroutine was called, line 381 GOTOs line 360
to give us the Other Options Menu again.

In the next chapter we will visit our godown, and see how we can store
away trade goods.

In the meantime, here are the lines we've used in this chapter:

355 REM OTHER OPTIONS <3fc,0-3fll)

Keeping Our Other Options Open: CHAPTER EIGHT 81

3b0 GOSUB 130:

GOSUB 1340:

VTAB 11:

INVERSE:

PRINT A$:

NORMAL:

PRINT " T) RADE i R) ECORDS" *, :

IF L = 0 THEN PRINT ", DENDER-. G) 0 D 0 Id N OR

E)MBARK?":

PRINT:

PRINT A$

3L1 IF L <> 0 THEN PRINT n OR E)MBARK?":

PRINT:

PRINT:

PRINT A$i

370 GOSUB bO:

IF X$ = "G" ANI> L = 0 THEN X = 1

371 IF X$ = "T" THEN 120

372 IF X$ = "R" THEN X = 2

373 IF X$ = "L" THEN X = 3

374 IF X$ = "E" THEN 730

375 IF (X$ <> "G" OR L <> 0) AND X$ <> "T" AND X$ <>

"R" AND X$ <> "L" AND X$ <> "E" THEN GOSUB 770:

GOTO 370

82 TAIPAN: A Historical Adventure for the Apple Computer

3A0 IF X = 3 AND L <> Q THEN GOSUB 770:

GOTO 370

3A1 IF X <> 3 OR L = 0 THEN ON X GOSUB 3H0ib00n470

GOTO 3b0

133A REM CLEANUP SUBROUTINE (1340-1370)

1340 FOR I = IB TO 1A

1345 HTAB 1

1350 VTAB I:

PRINT A$i

13b0 NEXT I

13bS PRINT:

VTAB IB

1370 RETURN

Lorcha

T A I P A N
A Historical Adventure for the Apple® Computer

Let's All Go Down to the Godown
CHAPTER NINE

The Godown subroutine is made up of eight lines, from 390 to 460. Those
lines handle the transfer of trade goods to or from the godown, and trap
and prevent errors by the player. Let's begin with line 390:

3AM REN GODOWN SUBROUTINE (3T0-4bl)

3A7 REN GODOWN MENU (3T0-33E)

3T0 GOSUB 130:

VTAB 13:

PRINT A$:

VTAB 13:

PRINT "CARGO <T>0 OR <F>R0N GODOWN?":

PRINT A$i:

GOSUB b0:

IF X$= "T" THEN 410

85

TAI PAN: A Historical Adventure for the Apple Computer 86

3T1 IF X$="F" THEN 440

3T2 IF X$<> "T" AND X$ <> "F" THEN GOSUB 770:

GOTO 3T0

Here we've been able to combine both a Godown Menu and the neces¬
sary processing of the player's input, into one line. If we choose to move
items To the godown, the program GOTOs 410. If we want to move cargo
From the godown, we GOTO 440. Any other input gives us the Input
Error raspberry, and restarts line 390 to ask us again.

Lines 410 through 430 handle moving cargo to the godown. Here's line

410:

410 GOSUB 400:

IF SG(X1) = 0 THEN VTAB 13:

PRINT "YOU HAVE NO "iG$(Xl)i" ABOARD! ":

GOSUB 7U0:

RETURN

We'll need the Godown Cargo Choice subroutine at 400, so here's that,

too:

3TS REN GODOUN CARGO CHOICE SUBROUTINE (400)

400 VTAB 13:

PRINT "N0VE U)HAT ("TC$")f ":

GOSUB EU0:

RETURN

Line 410 immediately GOSUBs 400 to get our choice of cargo to move
to the godown. At line 400, we're asked which cargo item we want
moved. (TC$ is printed to prompt us with the initials of the choices: "O,
S, T, A, P OR R".) The line then GOSUBs 260, where that line and 270
make up the same Item Choice subroutine we used in the Market Menu
Input routine back in Chapter 6. (The policy of the Authors, in the never-
ending quest for saving memory, is thus: if you can use a routine more
than once, make it a subroutine.)

Let's All Go Down to the Godown: CHAPTER NINE 87

Line 400 uses the Item Choice subroutine to obtain a value for XI,
which is a flag that stands for the chosen item. We then RETURN to
line 410.

Now line 410 checks to see if we have any of the chosen item aboard
ship. If not, an error message (telling us we don't have that item aboard)
is displayed, the No-Can-Do subroutine has its say, and we are
RETURNed to the Other Options routine.

If we do have at least one unit of the chosen item aboard our ship, line
420 asks us how much of it we'd like to move to the godown:

420 NUn$ =

VTAB 13:

PRINT A$:

VTAB 13:

PRINT " MOVE HOli) MUCH n;C$(Xl);n? "i:

G0SUB 310:

IF X$ = "A" THEN INVERSE:

PRINT CHR$ (fl)X"ALL"i :

NUN = SG(Xl) :

NORMAL

421 IF X$ <> "A" THEN NUN = VAL (NUM$)

425 HTAB 1

In this line one oddity needs explanation: CHR$(8) is used to back¬
space over our "artificial cursor" just before printing the word "ALL".

After asking us how much to move to the godown, line 420 GOSUBs
310, where the Sooper Dooper Number Scooper subroutine gets either a
number (stored as a string in NUM$) or the letter "A", which tells the
computer we want to put all of our cargo of the chosen item — SG(X1) —
into the godown. Either way, we start line 430 with the numerical variable
NUM holding the amount of cargo we wish to transfer from the ship to
the godown:

88 TAIPAN: A Historical Adventure for the Apple Computer

430 IF NUN > SG(X1) THEN VTAB 13:

PRINT " ONLY "i:

a = SG(X1) :

GOSUB 1330:

HTAB 11:

PRINT " UNITS ABOARD! ":

GOSUB 7L0:

GOTO 420

431 IF NUN < = SG(X1) THEN SG(X1) = SG(X1) - NUN:

SH = SH + NUN:

GG(X1) = GG(X1) + NUN:

NUN$ =

RETURN

First, line 430 checks to see if we're trying to move more cargo to the
godown than we have aboard ship. If that's what the player is trying to
do, then, after an error message and a No-Can-Do, the player is asked
again, at 420, how much of the item is to be put into the godown.

If the amount to be moved is legitimate, line 430 goes on to complete
the transaction, subtracting the chosen amount, NUM, from the amount
aboard ship, SG(X1), and adding the same amount to the quantity of that
item in the godown, GG(X1). The available cargo capacity of the ship
(SH) is also increased by the number of units moved to the godown.

Finally, line 430 RETURNS us to the Other Options routine.

Moving cargo From the godown requires similar programming:

440 GOSUB 400:

IF GG(X1) =0 THEN VTAB 13:

PRINT " THE GODOWN HAS NO " i G$ (XI) =, ° • ":

GOSUB 7L0:

RETURN

Let's All Go Down to the Godown: CHAPTER NINE 89

450 NUM$ =

VTAB 13:

PRINT B$i:

HTAB 1:

PRINT " MOVE HOlil MUCH "^G$(Xl)i" TO SHIP? ni :

GOSUB 310:

IF X$ = "A" THEN PRINT CHR$ (&)\:

INVERSE:

PRINT "ALL"i:

NORMAL:

NUM = GG(X1)

MSI IF X$ <> "A" THEN NUM = VAL (NUM$)

MbO IF NUM > GG(X1) THEN VTAB 13:

PRINT " JUST "i :<3 = GG(X1) :

GOSUB 1330:

PRINT " UNITS STORED!":

GOSUB 7L0:

GOTO 4S0

Mbl IF NUM < = GG(X1) THEN GG(X1) =GG(X1) - NUM:

SG(X1) = SG(X1) + NUM:

SH = SH - NUM:

NUM$ = "":

RETURN

Line 440, using the subroutine at 400 (and, via 400, the subroutine at
260), asks the player which item to move from the godown to the ship. It
then screens the input to make certain we have some of the item in our
godown.

The amount to be moved aboard ship is determined by line 450, which
calls the Sooper Dooper Number Scooper subroutine at 310, and uses
either a number or the letter A for "All".

90 TAIPA N: A Historical Adventure for the Apple Computer

Finally, line 460 either will catch the player trying to move more of an
item than is available from the godown to the ship, or will complete the
transfer, updating the amounts of the item in both the ship and the ware¬
house, and subtracting appropriately from the ship's available capacity. It
then RETURNS to the Other Options routine.

These are the lines we've input in this chapter:

3AM REM GODOWN SUBROUTINE (B'iO-Mbl)

3A7 REN GODOWN MENU OTO-BTE)

3TD GOSUB 130:

VTAB 13:

PRINT A$:

VTAB 13:

PRINT "CARGO <T>0 OR <F>R0N GODOWN?":

PRINT A$i:

GOSUB b0:

IF X$= "T" THEN M10

BTl IF X$="F" THEN MMO

3TE IF X$<> "T" AND X$ <> "F" THEN GOSUB 770:

GOTO 3T0

315 REN GODOWN CARGO CHOICE SUBROUTINE (MOO)

MOO VTAB 13:

PRINT "NOVE WHAT ("TC*")f ":

GOSUB SbO:

RETURN

Let's All Go Down to the Godoivn: CHAPTER NINE 91

410 GOSUB 400:

IF SG(X1) = 0 THEN VTAB 13:

PRINT "YOU HAVE NO "=,G$(X1):," ABOARD!

GOSUB 7b0:

RETURN

420 NUM$ =

VTAB 13:

PRINT A$:

VTAB 13:

PRINT " HOVE HOW I1UCH " i G$ (XI) i"? "i:

GOSUB 310:

IF X$ = "A" THEN INVERSE:

PRINT CHR$ (fl) i"ALL"i :

NUH = SG(X1) :

NORMAL

421 IF X$ <> "A" THEN NUd = VAL (NUM$)

425 HTAB 1

430 IF NUM > SG(X1) THEN VTAB 13:

PRINT " ONLY "i:

a = SG(X1):

GOSUB 1330:

HTAB 11:

PRINT " UNITS ABOARD! ":

GOSUB 7L0:

GOTO 420

92 TAIPAN: A Historical Adventure for the Apple Computer

431 IF NUtl < = SG(X1) THEN SG(X1) = SG(X1) - NUN

SH = SH + NUN:

GG(X1) = GG(X1) + NUN:

NUN$ =

RETURN

440 GOSUB 400:

IF GG(X1) =0 THEN VTAB 13:

PRINT " THE GODOIdN HAS NO "%G$(XI)•

GOSUB 7b0:

RETURN

450 NUN$ = "":

VTAB 13:

PRINT B$i:

HTAB l:

PRINT " NOVE H0til NUCH " G$ (XI) =." TO SHIPf "i

GOSUB 310:

IF X$ = "A" THEN PRINT CHR$ (fl)i:

INVERSE:

PRINT "ALL" i:

NORNAL:

NUN = GG(X1)

451 IF X$ <> "A" THEN NUN = VAL (NUN$)

4t,0 IF NUN > GG(X1) THEN VTAB 13:

PRINT " JUST "\:<2 = GG(X1):

GOSUB 1330:

PRINT " UNITS STORED!":

GOSUB 7fc>0:

GOTO 450

Let’s All Go Down to the Godown: CHAPTER NINE 93

4bl IF NUM < = GG(X1) THEN GG(X1) =GG(X1) - NUN:

SG(Xl) = SG(X1) + NUN:

SH = SH - NUN:

NUN$ = :

RETURN

T A I P A N
A Historical Adventure for the Apple® Computer

An International Record Collection
CHAPTER TEN

If the player inputs "R", for Records, at the Other Options routine, the
program GOSUBs to the Records subroutine.

The Records subroutine is used to display the highest and the lowest
prices the player has encountered in the various ports, as well as the
number of times the player has visited the ports in question. That kind of
information is the most important kind of data to a trader. It gives a tai-
pan the knowledge to plan trading routes and strategy. A player need not
keep extensive records of prices. The computer will do that automatically.

Since there is nowhere near enough room on a single screen to display
all of the highest and lowest prices the player has encountered in all of the
ports visited, the Records subroutine gives us two modes of calling up
those prices: by Port and by Item.

When using the Port mode, we are first asked for our choice of port,
then we are told how many times we've been in that port, and are then
given the highest and lowest prices we've yet encountered for every time
in that port.

In the Item mode, we are first asked which item we want to know
about, then we are given the number of visits we've made to each port.

95

96 TAIPA N: A Historical Adventure for the Apple Computer

and the highest and lowest prices we've encountered for the chosen item

in every port we've visited.

In either mode, prices for items in ports we haven't visited will not be
displayed, and a question mark ("?") will be shown instead. If we've
been in a port only once, the high and low prices for items there will be
the same. (We needn't have actually bought or sold any of the items in
the records — the records for all items will be updated every time we

enter a port.)

The Records subroutine starts with these lines:

5TS REM RECORDS SUBROUTINE (b00-7El)

too HOME:

INVERSE:

PRINT A*:,:

NORMAL:

PRINT " RECORDS OF HIGH & LOlil PRICES":

INVERSE:

PRINT A$=.:

NORMAL:

PRINT:

PRINT " RECORDS BY P)0RT OR I)TEM?":

PRINT " -"

fc,01 VTAB 10:

PRINT " PRESS <SPACEBAR> UHEN FINISHED":

PRINT:

INVERSE:

PRINT A$:

NORMAL

blO GOSUB HO:

IF X$ = "P" THEN GOSUB 7E0:

GOTO LEO

An International Record Collection: CHAPTER TEN 97

bll IF X$ = "I" THEN PRINT:

VTAB 5:

PRINT

PRINT A$:

GOSUB ttQ:

GOTO b7D

fc,12 IF X$ = " " THEN HONE:

RETURN

b!3 IF X$ <> "P" AND X$ <> "I"

AND X$ <> " " THEN GOSUB 770:

GOTO bid

Lines 600 and 601 simply gives us a Records Menu. Note that the
expected input is limited to pressing either the P, I or the "spacebar"
keys.

Handling this first input are lines 610 to 612. Line 610 GOSUBs 60 to get
a character to be held in X$, then, if the input is a P, we GOSUB to the
Port Choice subroutine, which will print out a list of ports from which we
may choose.

The Port Choice subroutine begins at line 720:

715 REN PORT CHOICE SUBROUTINE (720)

720 FOR I = D

VTAB (I /

PRINT A$:

VTAB (I /

PRINT In"

HTAB 20:

PRINT I +

NEXT I:

PRINT

TO 1 STEP 2:

2) + 4:

2) + 4:

"n L$(I) n :

In" ";L$I + 1):

98 TAIPAN: A Historical Adventure for the Apple Computer

721 PRINT "

PRINT:

INVERSE:

PRINT A$:

NORMAL:

RETURN

UHICH PORT (0-el)?

This subroutine is very simple — it just prints out the number and the
name of each port, prompts the player to input the number of the chosen

port, and RETURNS to 610.

Then line 610 (still assuming that the player has chosen the "Port"

mode) GOTOs 620:

b20 GOSUB L0:

IF ASC (X$) > 47 AND ASC (X$) < Sfl THEN X = VAL

(X$)

b21 IF ASC (X$) < 4fl OR ASC (X$) > 57 THEN GOSUB 770:

GOTO b20

Line 620 uses the Get String subroutine (60) to put a character into X$,
and checks that it's a numerical character. If the key pressed isn't a num¬
ber, line 621 gives us the Input Error note, and then we are given another
chance. Otherwise, the numerical character in X$ is converted by line 620
into a value in X, and we continue to lines 630, 640, 641 and 650:

b30 HOME:

PRINT " "•nL*<X)i" PRICES (VISITS:"iV(X)=.")n:

INVERSE:

PRINT " ITEM HIGH LOU "i:

NORMAL:

FOR I = 0 TO 5:

PRINT n "^G$(I)i:

HTAB 21

An International Record Collection: CHAPTER TEN 99

t> 4 □ IF H (X -i I) = 0 THEN PRINT " f";:

HTAB 30:

INVERSE:

PRINT " "i:

NORMAL:

PRINT "

NEXT I

bMl IF H(X11) <> 0 THEN HTAB 21:

PRINT H (X11)i:

HTAB 30:

INVERSE:

PRINT " "i:

NORMAL:

PRINT " niL(X11) :

NEXT I

fc.50 INVERSE:

PRINT A$:

NORMAL:

GOTO 700

Here's where the list of high and low prices for each item in the
selected port is displayed. This routine could be much simpler if we'd not
bothered to put in graphics to format it neatly, and if we'd been willing to
just show the prices as "0" for any port the player hadn't visited. But the
Authors are convinced that graphics can enhance the readability of a
screen, and that putting in question marks for prices in ports we haven't
visited is more accurate and much less misleading.

In line 630 we first HOME to clear the screen. Then we display at the
top of the screen, the name of the port, L$(X), the word "PRICES", and
then the number of times we've visited the chosen port. (Remember that
the numerical variable, X, now holds the number of the port we've cho¬
sen.) This serves to give us a heading for the information which will fol¬
low. That heading might look something like this:

SINGAPORE PRICES (VISITS: 2)

100 TAIPAN: A Historical Adventure for the Apple Computer

Line 630 then continues with a line using INVERSE characters embed¬
ded in a bright bar. This line serves to identify the three vertical columns
which will go below. Thus far, we might have something like the follow¬

ing displayed on the screen:

SINGAPORE PRICES (VISITS: 2)

Finally, line 630 starts a loop which increments I from 0 to 5, and starts

printing the names of our six trade goods.

The start of line 640 checks to see if the highest price for any item in the
chosen port is zero. This can be true only if the variable which holds the
high price, H(X,I), has never been given a value since initialization. And
that can only occur if we’ve never been to this port. So if the value of
H(X,I) is zero, line 640 prints question marks (with bright blocks between
them) instead of the high and low prices for such items. (In the Port
mode, the Records subroutine will naturally show only question marks

for all items in a port we haven't visited.)

If the high and low prices are known, line 641 goes on to display those

prices.

A bright bar (an INVERSE A$) is displayed by line 650, and we then

GOTO line 700.

Lines 700 to 711 are used simply to allow us to look at the display of
prices, then press the spacebar when we've seen enough:

700 PRINT ° PRESS <SPACEBAR> WHEN FINISHED" =i

710 G0SUB b0:

IF x$ = " " THEN bOO

711 GOTO 710

The total screen in the Port mode of the Records subroutine should

look like this to us:

An International Record Collection: CHAPTER TEN 101

SINGAPORE PRICES (VISITS: 2)

#ITEH###############HIGH#######L0liJ######
OPIUM 2b213 # lbS04
SILK 1D2A7 # 7b42
TEA 13b2 # 1111
ARMS 231 # 22b
PEPPER 21 # 27
RICE 7 # b

PRESS <SPACEBAR> WHEN FINISHED

When the spacebar is pressed, line 710 throws us right back to line 600,
where we once again have the choice of viewing high and low prices
either in the Port or Item mode. This time, let's suppose we choose the
Item mode. Line 611 will first have us GOSUB 660:

bbU VTAB 5:

FOR I = D TO S:

PRINT " "iG$(I) i:

NEXT I:

PRINT:

PRINT " IdHAT ITEM ("iTCSi f":

PRINT:

PRINT A$:

INVERSE:

PRINT A$:

NORMAL:

GOSUB 2b0:

RETURN

This line displays the names of all the items of trade, and asks the
player for which item price records are to be displayed. It then GOSUBs
260 (the same Item Choice subroutine used by both the Market and the
Godown routines), and thus RETURNS briefly to 611 with the chosen
item's number held in variable XI.

102 TAIPAN: A Historical Adventure for the Apple Computer

Next, line 611 immediately GOTOs line 670, where the Item mode dis¬
play starts, continuing with lines 680, 681 and 690:

b?0: HOME:

PRINT " "=,G$(XD i" PRICES":

INVERSE:

PRINT " PORT VISITS HIGH LOW "i:

NORMAL:

FOR I = 0 TO 1:

PRINT L$(I)i

b6B VTAB 1+3:

HTAB 12:

PRINT V(I) i :

IF L(IiXl) = 0 THEN HTAB 21:

INVERSE:

PRINT "

NORMAL:

PRINT " f"i:

HTAB 32:

PRINT

NEXT I:

GOTO b^D

bfil IF L(InXl) <> □ THEN HTAB 21:

INVERSE:

PRINT " "i:

NORMAL:

PRINT " "iH(IiXI)i:

HTAB 31:

PRINT " "a(IiXl) :

NEXT I

blD INVERSE:

An International Record Collection: CHAPTER TEN 103

PRINT A$:

NORMAL

These lines are so similar to the routine used in the Port mode that they
require no further explanation. The program "falls through" to lines 700,
710 and 711, which we used in the Port mode to terminate the display.
Here's how an Item mode display might look:

TEA PRICES

#P0RT#####VISITS####HIGH####L0W#########

HONGKONG 2 # 70S bb7

FOOCHOW D # ? ?

SHANGHAI 0 # ? ?

NAGASAKI 0 # ? ?

MANILA 0 # f ?

SINGAPORE 3 # 13b2 im
BATAVIA 1 # 13bfl 13bfl

SAIGON 0 # ?

CALCUTTA 1 # 1777 1777

LIVERPOOL D # ?

PRESS <SPACEBAR> WHEN FINISHED

We can now hit the spacebar once, and we're back to the Records
Menu, and hit it again, and we RETURN all the way back to 381, which in
turn has us immediately GOTO 360, the Other Options routine. Now
we're ready to explore some of the other Other Options. But first, here
are all the lines we've put into our computer in this chapter:

STS REM RECORDS SUBROUTINE (fc.UO-721)

b00 HOME:

INVERSE:

PRINT A$i:

104 TAIPAN: A Historical Adventure for the Apple Computer

NORMAL:

PRINT " RECORDS OF HIGH & LOW PRICES":

INVERSE:

PRINT A$^:

NORMAL:

PRINT:

PRINT " RECORDS BY P)ORT OR I)TEMf ":

PRINT " _"

bOl VTAB 10:

PRINT " PRESS <SPACEBAR> WHEN FINISHED"

PRINT:

INVERSE:

PRINT A$:

NORMAL

blO GOSUB bO:

IF X$ = "P" THEN GOSUB 7E0:

GOTO bBO

bll IF X$ = "I" THEN PRINT:

VTAB 5:

PRINT A$i:

PRINT A$:

GOSUB bbO:

GOTO b?0

blE IF X$ = " " THEN HOME:

RETURN

bl3 IF X$ <> "P" AND X$ <> "I"

AND X$ <> " " THEN GOSUB 770:

GOTO blO

An International Record Collection: CHAPTER TEN 105

L20 GOSUB bO:

IF ASC (X$) > 47 AND ASC (X$) < 5fi THEN X = VAL

(X$)

L21 IF ASC (X$) < 4fl OR ASC (X$) > 57 THEN GOSUB 770:

GOTO taE□

L30 HOME:

PRINT " "iL$(X)^" PRICES (VISITSiV(X)i")":

INVERSE:

PRINT " ITEM HIGH LOU "i:

NORMAL:

FOR I = 0 TO 5:

PRINT " "*G*(I)i:

HTAB 21

L40 IF H(XiI) = 0 THEN PRINT " ?"*:

HTAB 30:

INVERSE:

PRINT "

NORMAL:

PRINT "

NEXT I

L41 IF H(XiI) <> 0 THEN HTAB 21:

PRINT H(Xal)i:

HTAB 30:

INVERSE:

PRINT n

NORMAL:

PRINT "

NEXT I

L (X n I)

106 TAIPAN: A Historical Adventure for the Apple Computer

bSO INVERSE:

PRINT A$:

NORMAL:

GOTO 700

bbO VTAB 5:

FOR I = D TO 5:

PRINT " "iG*(I> , :

NEXT I:

PRINT:

PRINT " WHAT ITEM ("iTC$i

PRINT:

PRINT A$:

INVERSE:

PRINT A$:

NORMAL:

GOSUB BbO:

RETURN

b7D HOME:

PRINT " "iG$(Xl)=," PRICES":

INVERSE:

PRINT " PORT VISITS HIGH LOW

NORMAL:

FOR I = D TO T:

PRINT L*(I) i

bfiO VTAB 1+3:

HTAB IB:

PRINT V(I) i :

IF L(IiXl) = 0 THEN HTAB 21:

INVERSE:

An International Record Collection: CHAPTER TEN 107

PRINT "

NORMAL:

PRINT " :

HTAB 32:

PRINT

NEXT I:

GOTO b^O

bfll IF L(IiXI) <> D THEN HTAB 21:

INVERSE:

PRINT " " '■<:

NORMAL:

PRINT " "iH(11XI) i:

HTAB 31:

PRINT " "iL(11XI) :

NEXT I

b'lO INVERSE:

PRINT A$:

NORMAL

700 PRINT " PRESS <SPACEBAR> WHEN FINISHED"i

710 GOSUB bO:

IF X$ = " " THEN bOO

711 GOTO 710

715 REM PORT CHOICE SUBROUTINE (720)

720 FOR I = 0 TO 1 STEP 2:

VTAB (I / 2) + 4:

108 TAI PAN: A Historical Adventure for the Apple Computer

PRINT A$:

VTAB (I / 2) + M:

PRINT Ii" "iL$(I)i:

HTAB 20:

PRINT I + li" + 1) :

NEXT I:

PRINT

721 PRINT " WHICH PORT (O-T)f

PRINT:

INVERSE:

PRINT A$:

NORMAL:

RETURN

Elder Brother Wu at the office

T A I P A N
A Historical Adventure for the Apple® Computer

Brother, Can You Spare a Dime?
CHAPTER ELEVEN

Choosing "L" for lender at the Other Options routine is, like the Godown
option, possible only when we are in Hongkong. It brings us face to face
with the chief of the Iron Lotus Triad, Elder Wu.

The Iron Lotus Triad has come a long way under the leadership of our
fictitious Elder Brother Wu. In the "old days", when the triad had been
headquartered in Foochow, spies sent by the hated Manchus had con¬
stantly acted as agents provocateur, sparking poorly-planned riots and
rebellions. As a result, members and leaders of the Iron Lotus had often
been caught, tortured, and beheaded. The Triad's treasury was regularly
"impounded" by thieving officials who kept it all for themselves.

But Elder Brother Wu had changed all that. He had brought the head¬
quarters of the Iron Lotus Triad to Hongkong. Secure Hongkong, where
the British barbarians kept the Manchu barbarians at a safe distance.
Here Wu had established secret schools which taught his braves the
deadly Iron Lotus variant of Chinese boxing. A base from which the Iron
Lotus could spread its underworld and political tentacles far into China
and the Chinese communities of Southeast Asia. A prosperous haven,
where Wu had transformed the financial aid services the triad provided

111

112 TAIPAN: A Historical Adventure for the Apple Computer

to members into a lucrative moneylending business, which bankrolled
even some of the Western barbarian traders.

When we press the "L" key on our Apple II, we must remember it
means we're visiting this Brother Wu.

Line 381 of the Other Options routine sends us to the beginning of the
Lender routine:

4L.5 REI1 LENDER SUBROUTINE (470-SfiU)

47D GOSUB 130:

GOSUB 1340:

VTAB IE:

PRINT "EWANCHAI DISTRICT OF HONGKONG: HOME OF "=.

b)$n"]ln:

PRINT GREETS YOU-. TAIPAN-. AND WISHES YOU

WELL-":

GOSUB 7fl0:

VTAB 14:

PRINT A$:

PRINT A$

This line amounts to a simple greeting by Wu, followed by the use of
the Delay subroutine to give the player time to read it — or the option of
cutting the message short using the spacebar.

Way back in line 10, we'd put the words, "ELDER BROTHER WU" into
W$. This string will be used so often in the Lender routine that the mem¬
ory saved by this technique should become obvious.

Wu's greeting continues in line 480:

4fl0 VTAB 14:

PRINT "WU STATES THAT HIS IRON LOTUS":

PRINT "TRIAD HAS BEEN WATCHING YOU-":

GOSUB 7A0

Brother, Can You Spare a Dime?: CHAPTER ELEVEN 113

We finally cut the social graces and get down to business in the next
five lines:

4^0 VTAB 14:

PRINT A$:

PRINT A$:

PRINT A$:

VTAB 14:

PRINT W$i" ASKS-. DO YOU":

PRINT A$i:

VTAB IS:

PRINT "WISH TO B) ORROW P)AYi OR <3)UIT?

NUI1$ = ""

500 GOSUB bO:

IF X$ = "B" THEN LD$ = "BORROW":

LD = 1

501 IF X$ = "P" THEN LD$ = "PAY":

LD = E

SDE IF X$ = "(3" THEN PRINT:

GOSUB 1340:

RETURN

S03 IF X$ <> "B" AND X$ <> "P"

AND X$ <> "(3" THEN GOSUB 770:

GOTO 500

These lines are typical of the kind of menu and menu-handling rou¬
tines we're using in Taipan. Note the use of LD$, which will allow the
dual use of a later line (to save memory, as usual). We're also setting the
variable LD as a flag to indicate what type of business we're doing with

114 TAIPAN: A Historical Adventure for the Apple Computer

Wu. The input of "Q" is our escape route from the home of Elder Brother
Wu. It puts us back at the Other Options routine.

If we've decided to borrow money from Wu, line 510 represents that
gentleman's decisionmaking as to whether or not he wants to loan us
anything at the moment:

510 IF LD = 1 AND (B = 1 OR D > 1E4) THEN GOSUB 1340:

VTAB 15:

PRINT "WU REGRETS THAT HE CANNOT LOAN":

PRINT "YOU MORE AT THIS TIME-. TAIPAN-";:

GOSUB 7L0

GOTO 450

Elder Brother Wu's logic here translates as: "That barbarian wants to
borrow money from me, eh? Then I'll check to see if he has either bor¬
rowed previously this time in port, or already owes me more than 10,000
in cash. If so. I'll tell him to fly a kite — but politely."

The "B = l" in line 510 is a check of a flag which is set later in the
Lender routine to indicate that the player has borrowed from Wu. (B is
cleared to a value of 0 whenever we enter port.)

If we get past this initial rejection, the next three lines will process the
input of the amount to be borrowed or repaid:

530 GOSUB 1340:

VTAB 15:

PRINT "H0U MUCH DO YOU WISH TO "iLD*;"-.":

PRINT "TAIPAN? ";:

GOSUB 310:

NUN = VAL (NUI1$)

530 IF X$ = "A" AND LD = 1 THEN PRINT CHR$ (fl);:

INVERSE:

PRINT "ALL";:

NORMAL:

NUM = C * 3

Brother, Can You Spare a Dime?: CHAPTER ELEVEN 115

531 IF X$ ■ "A"

INVERSE:

PRINT "ALL"

NORMAL:

NUM = D

AND LD = E THEN PRINT CHR$

Line 520 asks the quantity of cash we wish to either borrow from or pay
to Wu. (Lines 500 and 501 had put either "BORROW" or "PAY" into
LD$.) Next, the line GOSUBs the Sooper Dooper Number Scooper, then
converts any number characters in NUM$ into a value to be held
in NUM.

Then lines 530 and 531 handle, respectively, the input of "A" for "All"
for borrowing, and for paying. Line 530 sets the amount to be borrowed
to twice the player’s cash (C). Line 531 sets the amount to be repaid to the
full amount owed (D). (But what if we've got less cash than we owe?
We'll handle that possibility in a moment.)

Line 540 routes program flow to line 560, if we're paying Elder Brother
Wu. If we're borrowing, line 541 checks to see if we're trying to borrow
more than our credit limit with Wu will allow:

540 IF LD = E THEN 5L0

541 IF NUM > S * C THEN VTAB 15:

PRINT A$:

VTAB IS:

PRINT Id*:," REGRETS THAT HE":

PRINT "CANNOT LOAN YOU THAT MUCH."i:

G0SUB 7L0:

GOTO 450:

Wu's simple formula of lending is thus: you can borrow only twice
what you already have in cash. You show him your cash, he gives
you his.

The convenience of this credit check comes free — with his 100% inter¬
est rates.

116 TAIPAN: A Historical Adventure for the Apple Computer

(Notice, again, that if we're paying Wu, line 540 has the program
GOTO 560, skipping the lines between.)

The B flag is set in line 550, to indicate we've borrowed once this time
in Hongkong. Here's the whole line:

550 B = l:

C = C + NUfl:

D = D + NUII:

GOSUB 130:

GOTO 450

Line 550 adds the borrowed money to our cash, adds the same amount
to our debt, updates the screen to show these changes, then tosses us
back to the main Lender menu at 490.

The rest of the Lender routine handles paying Wu. Remember the
question we raised about what to do if we tried to pay back more than we
had in cash? Lines 560 and 561 take care of that, and a few other things
as well:

5b0 IF NUII > C THEN NUM = C:

D = D -C:

C = 0:

GOSUB 130:

VTAB IS:

PRINT U$=," THANKS YOU-,":

PRINT "TAIPAN-, FOR THE PAYMENT • "i:

GOSUB 7fl0:

IF D < 0 THEN D = 0:

GOSUB 130:

GOTO 450

Sbl IF NUM > C AND D > = 0 THEN GOSUB 130:

GOTO 450

Brother, Can You Spare a Dime?: CHAPTER ELEVEN 117

First, we've checked to determine whether we're trying to repay Wu
more money than we have. In such a case, Wu takes all of our cash, our
cash and our debt are corrected, and we are given Wu's thanks. If, addi¬
tionally, we've paid Wu more than we owe him, line 560 has him consider
accounts even. (Wu will not consider himself in debt to us!. The player,
like a real taipan, will just have to be careful.) In either case, either at the
end of line 560 or line 561, we're now routed back to the main
Lender menu.

In line 570 the lender routine checks for our having input a payment
which is larger than our debt, yet is less than or equal to our cash. (We know
that the payment will be less than our cash because the program
wouldn't have gotten past the last line if it weren't.)

Here is how line 570 handles its task:

570 IF NUI1 > D THEN D = 0:

C = C - NUN:

VTAB 15:

PRINT WSi" THANKS YOU FOR YOUR STARTLING GENER0S

ITY!" i :

G0SUB 130:

G0SUB 7A0:

GOTO 450

Wu has just taken what we offered to pay him. He's grateful, because
he can now apply this windfall toward the business of the Iron Lotus
Triad. And we can't get the extra money back!

The more usual type of repayment is handled in line 580:

SfiO C = C - NUN:

D = D - NUN:

G0SUB 130:

VTAB 15:

PRINT

118 TAIPAN: A Historical Adventure for the Apple Computer

" ACCEPTS YOUR PAYMENT WITH GRATITUDE-, TAIPAN
n ■ .

-i •

GOSUB 7fl0:

GOTO MID

Here we've paid Wu with money we actually have, and have paid only
all or part of what we owe him. The program takes us back to line 490,
where we can Quit the Lender routine and go back to the Other
Options routine.

These are the program lines we've introduced in this chapter:

4bS REM LENDER SUBROUTINE (470-560)

470 GOSUB 130:

GOSUB 1340:

VTAB IB:

PRINT "EWANCHAI DISTRICT OF HONGKONG: HOME OF "=,

li)$i"3n:

PRINT W$=i" GREETS YOU-, TAIPAN-, AND WISHES YOU

WELL.”:

GOSUB 760:

VTAB 14:

PRINT A$:

PRINT A$

460 VTAB 14:

PRINT "WU STATES THAT HIS IRON LOTUS":

PRINT "TRIAD HAS BEEN WATCHING YOU-":

GOSUB 760

4T0 VTAB 14:

PRINT A$:

PRINT A$:

PRINT A$:

Brother, Can You Spare a Dime?: CHAPTER ELEVEN 119

VTAB 14:

PRINT W$i" ASKSi DO YOU":

PRINT A$i:

VTAB IS:

PRINT "WISH TO B)ORROWi P)AY, OR <2)UIT? "s:

NUM$ = ""

500 GOSUB bO:

IF X$ = "B" THEN LD$ = "BORROW":

LD = 1

501 IF X$ = "P" THEN LD$ = "PAY":

LD = 2

502 IF X$ = "<2" THEN PRINT:

GOSUB 1340:

RETURN

503 IF X$ <> "B" AND X$ <> "P"

AND X$ <> "(3" THEN GOSUB 770:

GOTO 500

S10 IF LD = 1 AND (B = 1 OR D > 1E4) THEN GOSUB 1340:

VTAB IS:

PRINT "WU REGRETS THAT HE CANNOT LOAN":

PRINT "YOU MORE AT THIS TIME n TAIPAN•"i:

GOSUB 7U0:

GOTO 410

520 GOSUB 1340:

VTAB IS:

PRINT "HOW MUCH DO YOU WISH TO LD$:

PRINT "TAIPANf "i:

GOSUB 310:

NUM = VAL (NUM$)

120 TAIPAN: A Historical Adventure for the Apple Computer

530 IF X$ = "A" AND LD = 1 THEN PRINT CHR$ (fl)

INVERSE:

PRINT "ALL":, :

NORMAL:

NUM = C * 2

531 IF X$ = "A" AND LD = E THEN PRINT CHR$ (5)

INVERSE:

PRINT "ALL" =i:

NORMAL:

NUM = D

540 IF LD = £ THEN 5L0

541 IF NUM > E * C THEN VTAB 15:

PRINT A$:

VTAB 15:

PRINT li)$i" REGRETS THAT HE":

PRINT "CANNOT LOAN YOU THAT MUCH.":,:

GOSUB 7b□:

GOTO MHO

550 B = l:

C = C + NUM:

D = D + NUM:

GOSUB 130:

GOTO MHO

SLO IF NUM > C THEN NUM = C:

D = D - C:

C = 0:

GOSUB 130:

VTAB IS:

PRINT THANKS YOU-,":

Brother, Can You Spare a Dime?: CHAPTER ELEVEN 121

PRINT "TAIPAN-, FOR THE PAYMENT-"i:

GOSUB 7flO:

IF D < D THEN D = 0:

GOSUB 130:

GOTO 410

5bl IF NUM > C AND D > = 0 THEN GOSUB 130:

GOTO 410

570 IF NUM > D THEN D = 0:

C = C - NUM:

VTAB 15:

PRINT lilSi" THANKS YOU FOR YOUR STARTLING GENEROS

ITY!" i :

GOSUB 130:

GOSUB 7A0:

GOTO 410

5A0 C = C - NUM:

1 = D - NUM:

GOSUB 130:

VTAB IS:

PRINT

n ACCEPTS YOUR PAYMENT WITH GRATITUDE-, TAIPAN

GOSUB 7AO:

GOTO 410

T A I P A N
A Historical Adventure for the Apple® Computer

A Gold Watch and a Hearty Handshake
CHAPTER TWELVE

The last option available to us at the Other Options menu is "E" for
Embark — but that option (and all the things that can happen at sea) will
require several chapters to cover effectively. So let's skip "Embark" until
later. Instead, we'll press "T" for Trade, which gets us to the Market
Menu.

If we were now to input "R", for Retire, the program will GOTO the
That's All Folks routine.

The That's All Folks routine is the retirement and scoring portion of
Taipan. The first line of the routine is 1300:

lETS REM THAT’S ALL FOLKS (1300-1321)

1300 HOME:

Nld = C - D:

d = Nti) / GT:

VTAB 4:

INVERSE:

123

124 TAI PAN: A Historical Adventure for the Apple Computer

PRINT A$i:

NORMAL:

PRINT:

PRINT "YOUR SCORE-i BASED UPON TIME AND YOUR":

PRINT "NET WORTH (EXCLUDING STOCK) IS "i:

GOSUB 1330:

INVERSE:

PRINT A$:

NORMAL

This pretty well establishes that the object of the game of Taipan is to
make as much money as possible in the least possible time. Line 1300 first
clears the screen. Next, the variable NW (for Net Worth) is defined as
being our cash minus our debt. Then NW is divided by GT (Game Time),
which has been updated each time we've gone on an ocean voyage. The
result of this division is placed into the variable Q, so it can be displayed
by the Big Number subroutine. The line goes on to give its message and
to display the player's score.

The following line is used to allow the player to return to playing the
game if the That's All Folks routine was reached via the Market Menu,
rather than by the player's "death" by pirates or shipwreck. (We'll see
those less pleasant ways of getting there in later chapters.) By using line
1310, we are able to do two things — allow a player to recover from an
accidental input of "R" at the Market routine, and permit the player to
check out his or her score in the middle of the game.

This is how we've done it:

1310 IF X$ = "R" THEN PRINT "WOULD YOU LIKE TO PICK UP

THIS":

PRINT "GAME WHERE YOU LEFT OFF (Y/N)f":

GOSUB L0:

IF X$ = "Y" THEN HOME:

GOTO 120

The routines which might have "killed" us are designed in such a way
that X$ would never contain an "R" if we were to be wiped out at sea. So

A Gold Watch and a Hearty Handshake: CHAPTER TWELVE 125

we use the presence of an "R" in X$ to let us know that we'd reached this
routine voluntarily, from the Market Menu. If that's the case, line 1310
operates. (Otherwise the program fails through to the next line.)

If we now press the "Y" key, we are taken right back to the Market
Menu, with the game continuing as if nothing had happened.

If, however, we were either killed off in the game, or had not chosen to
continue the game, lines 1320 and 1321 come into play:

1320 GOSUB 1340

VTAB 10:

PRINT A*:,:

PRINT "DO YOU WISH TO START OVER (Y/N)/":

GOSUB L.0:

IF X$ = "Y" THEN RUN

1321 END

All we do here is give the player a chance to start the game over from the
top. This way we don't have to enter "RUN" every time we play the
game.

Here are the lines we've used in this short chapter:

1205 REN THAT'S ALL FOLKS (1300-1321)

1300 HONE:

NU = C - D:

<2 = Nld / GT:

VTAB 4:

INVERSE:

PRINT A$^:

N0RNAL:

PRINT:

PRINT "YOUR SCORE-. BASED UPON TINE AND YOUR":

PRINT "NET UJ0RTH (EXCLUDING STOCK) IS "i:

GOSUB 1330:

126 TAIPAN: A Historical Adventure for the Apple Computer

INVERSE:

PRINT A$:

NORMAL

1310 IF X$ = "R" THEN PRINT "WOULD YOU LIKE TO PICK UP

THIS":

PRINT "GAME WHERE YOU LEFT OFF (Y/N)f":

GOSUB LO:

IF X$ = "Y" THEN HOME:

GOTO 120

1320 GOSUB 1340

VTAB 10:

PRINT A$;:

PRINT "DO YOU WISH TO START OVER (Y/N)/":

GOSUB taO:

IF X$ = "Y" THEN RUN

1321 END

CALricu
**• »•• 1M toe

CAcAjUs s'~

l KariAJM-''—.

> (jjA

'&rict(/cL^
*kf ,, r''.■''“v""”""'"

J\ '* . \>:/<M/jU(LktVur\

Co 1
. J

/ FoJuJslW

;..... /-.

^Ku/"a*S}**- • CUcc/&sn^

'xfoui/ls C/ioriOL-. / Vr..,-iv<:.
jdjljOL-

T A I P A N
A Historical Adventure for the Apple® Computer

Anchors Azveigh!
CHAPTER THIRTEEN

Now let's go back to the one choice in the Other Options routine which
we haven't yet explored: "E" for "Embark".

We previously took a geographical history tour of the ten ports o' call
in Taipan. Now it's time for the player to visit some of them. The Other
Options routine has us GOTO 730 to begin our voyage:

725 REM EMBARK (730-751)

730 IF SH < 0 THEN VTAB 13:

PRINT "YOUR SHIP IS OVERLOADED-, TAIPAN

PRINT A$:

GOSUB 7L0:

GOTO 3L0

129

130 TAIPAN: A Historical Adventure for the Apple Computer

731 IF SH > = □ THEN HOME:

PRINT TAB(11) i :

INVERSE:

PRINT "EMBARKING":

NORMAL:

PRINT TAB(5)i"FROM "iL$(L>:

INVERSE:

PRINT A$:

NORMAL:

FOR I = 0 TO 5:

IF L = I THEN NEXT I:

GOTO 740

732 IF L <> I THEN PRINT TAB(10)ili" "iLSd):

NEXT I

Line 730 begins by preventing us from sailing our ship with more than
a capacity load of cargo. The variable SH holds the cwuilcible capacity of
the craft, not the load the ship actually has aboard. In other words, if our
ship has a capacity of 50 units, a cargo of 23 units of rice and 20 units of
arms would give us an available capacity of 7 units. If we were to add 8
units of pepper, we could not sail. With an overload, we get a message
display, a No-Can-Do buzz, and the program will GOTO 360, the Other
Options routine. We must either transfer excess cargo to the godown (if
we're in Hongkong), or sell enough to allow us to sail.

Think of excess cargo as not actually being aboard ship, but standing in
stacks of cases on the dock. Thus we can have any amount of cargo tem¬
porarily "aboard ship" while in port. But we're not able to leave it on the
docks when we embark. The cargo must either be in our godown, or
must fit aboard ship. Eventually, if the player prospers as a taipan, it will
be possible to obtain a larger ship. But cargo capacity will be a limiting
bottleneck at many points throughout the game—a bottleneck which is

necessary to ensure challenging play.

Anchors Aweigh!: CHAPTER THIRTEEN 131

But if we're not overloaded, lines 731 and 732 go on to give us a display
which shows us the port from which we're embarking, and then run
through a loop which prints the numbers and names of all the other
ports.

Line 740 prompts the player to select the next port o' call:

740 PRINT:

PRINT:

INVERSE:

PRINT A$:

NORMAL:

PRINT "WHAT PORT O’ CALL-. TAIPAN (0-5)?"

After the prompt, the next line processes the player's choice:

750 GOSUB L0:

IF ASC (X*) > 47 AND ASC (X$) < 5fl AND VAL (X$) <>

L

THEN P0 = VAL (X$) :

GOTO 5fl0

751 GOSUB 770:

GOTO 750

Line 750 makes sure that the input character is a number, and that it is
not the number of the port the player is in. If the input is not a number, or
is the number of the port we're in (L), line 751 has us GOSUB the Input
Error subroutine, and then try for another input. But if the input is
acceptable, the program will put the number of the chosen port into vari¬
able PO, then it will GOTO 980, where the Voyage routine begins:

575 REN VOYAGE (5fl0-iaeJ0)

132 TAIPAN: A Historical Adventure for the Apple Computer

‘laO HOME:

PRINT:

INVERSE:

PRINT A$=,:

NORMAL:

PRINT " SEA VOYAGE FROM "=,L$(L):

PRINT " TO "iL$(PO) :

INVERSE:

PRINT A$:

NORMAL:

GOSUB 7fl0:

HOME:

ET = ABS (LO(L) - LO(PO))

Tfil IF INT (RND (1) * 50) + 1 >

INT (RND (1) * ET) + 1 THEN 1E10

These lines do several things. First, line 980 shows us where we've
been and where we're going. Last, it computes the raw value for ET, the
"Elapsed Time" (in days) of the voyage. This uses a tricky method based
upon subtracting the "location" figure of the port we're leaving, "LO(L)"
from the location number of the next port o' call, "L(PO)". The resulting
number is then made an "absolute number"—any minus sign is
removed. That gives us the raw number of days required for the voyage.
(Later, that figure will be processed further to give a bit of randomness to
the voyage's duration.)

Line 981 then makes a decision as to whether or not there might be
"trouble" during the voyage, by comparing the value of a random frac¬
tion times fifty (plus one), to the value of another random fraction multi¬
plied by "ET" (plus one). Here we use a technique which the Authors
favor: a combination of controllable and random factors. Since the length
of the voyage can be controlled by the choice of port o' call, there is an
element we might loosely call "free will". And since a random factor
operates on a number we have "chosen", there is sort of a "fate" factor as
well. The longer the voyage, the more chance of trouble at sea. It seems a
decent way of mimicking reality.

Anchors Aweighh CHAPTER THIRTEEN 133

If our algorithm finds that there is going to be no possibility of trouble,
the program will go to 1290, the Arrival routine. But if trouble is
"expected" we go on to the next lines:

565 REM STORM (550-10BB)

no IF RND (1) > .5 THEN 1030

551 VTAB 13:

PRINT B$=,:

HTAB l:

PRINT " STORM-, TAIPAN ! " :

GOSUB 7b0

Uh, oh! Looks like we're not having smooth sailing on our maiden
voyage. There's now about a 50% chance we'll be sent to the Pirates rou¬
tine starting at 1030 ("IF RND (1) > .5 THEN 1030"). Remember, line 981
has already determined we're in for trouble, by not sending us to the
safety of line 1290. If we didn't get sent off to the Pirates routine right
away, now we're headed into a storm.

Let's see if we can ride out this gale:

1000 IF RND (1) > .E THEN 10E0

1001 VTAB 14:

PRINT " ANY PORT IN A STORM, ":

GOSUB 7b0:

P0 = INT (RND (1) * 10) :

IF P0 = L THEN VTAB 14:

PRINT " UE CAN'T MAKE IT,

T AIPAN, ":

SR = 0:

GOTO 1050

134 TAI PAN: A Historical Adventure for the Apple Computer

In line 1000, we first give the player an 80% chance of riding out the
storm unscathed. If this is the case, we GOTO 1020.

If the storm's really a problem, line 1001 will have the ship try to put in
at any port at all. We use the random choice of an emergency haven also
as a way of finding out if we've survived the storm: if the number of the
haven is the same as the number of the port we've just departed, then we
didn't make it. (There's no logical justification for this, except the fact
that it's a simple and memory-cheap way to do it.) If we "can't make it",
we GOTO 1090, where there's a routine that tells us of our fate, and
routes us to the That's All Folks routine. (Since line 1090 is also used
when we're sunk by pirates, we'll cover that in a later chapter.)

Assuming we've survived the storm, however, the next four lines let us

know:

1010 VTAB 14:

PRINT " WE’RE HEADED

FOR SHELTERi ":

G0SUB 7S0

1020 VTAB 14:

PRINT " WE RODE OUT THE

STORM-. TAIPAN! ":

G0SUB 7A0

1021 IF RND (1) > -5 THEN ‘HO

1022 GOTO 12T0

Line 1021 will, half the time, send us back to line 990, where we may
have further troubles. If not, line 1022 sends us directly to the Arrival rou¬
tine at line 1290.

That's all there is to the Embark routine and the "storm" portion of the
Voyage routine.

Anchors Aweigh!: CHAPTER THIRTEEN 135

Some words about how we handled storms: this is one kind of danger
which we can never, as players, totally eliminate.

There is always a small chance that in any given voyage, our ship will
founder in high seas. The chance is exceedingly small, however. But the
Authors feel that it would be unrealistic in the extreme to allow an
"unsinkable" ship to sail the simulated seas of the 1860's. Even now, no
ship, however huge and powerful, can be considered completely safe
from the ravages of oceanic conditions.

The following is a recap of the lines we've introduced in this chapter:

7E5 REM EMBARK (730-751)

730 IF SH < 0 THEN VTAB 13:

PRINT "YOUR SHIP IS OVERLOADED-. TAIPAN

PRINT A$:

GOSUB 7L0:

GOTO 3L.0

731 IF SH > = 0 THEN HONE:

PRINT TAB(11)i:

INVERSE:

PRINT "EMBARKING":

NORMAL:

PRINT TAB (T"FR0M " i L$ (L) :

INVERSE:

PRINT A$:

NORMAL:

FOR I = 0 TO T:

IF L = I THEN NEXT I:

GOTO 740

732 IF L <> I THEN PRINT TAB (10)ili" "^L$(I):

NEXT I

136 TAIPAN: A Historical Adventure for the Apple Computer

740 PRINT:

PRINT:

INVERSE:

PRINT A$:

NORMAL:

PRINT "WHAT PORT O' CALL-. TAIPAN (0-1>f"

750 GOSUB LO:

IF ASC (X$) > 47 AND ASC (X$) < 5fl AND VAL (X$) <>

L

THEN PO = VAL (X$) :

GOTO HAD

751 GOSUB 770:

GOTO 750

H75 REM VOYAGE (TA0-12T0)

HAO HOME:

PRINT:

INVERSE:

PRINT A$i:

NORMAL:

PRINT " SEA VOYAGE FROM "iL$(L) :

PRINT " TO "iL$(PO) :

INVERSE:

PRINT A$:

NORMAL:

GOSUB 7A0:

HOME:

ET = ABS (LO(L) - LO(PO))

1A1 IF INT (RND (1) * 50) + 1 >

INT (RND (1) * ET) + 1 THEN 12^0

Anchors Aweigh!: CHAPTER THIRTEEN 137

TfiS REtl STORM mo-1022)

TTO IF RND (1) > .S THEN 1030

T51 VTAB 13:

PRINT B$i:

HTAB l:

PRINT " STORM-, TAIPAN ! " :

GOSUB 7fc,0

1000 IF RND (1) > -2 THEN 1020

1001 VTAB 14:

PRINT " ANY PORT IN A STORM,

GOSUB 7b0:

PO = INT (RND (1) * 10) :

IF PO = L THEN VTAB 14:

PRINT " tilE CAN’T MAKE IT,

T AIPAN, ":

SR = 0:

GOTO 1010

1010 VTAB 14:

PRINT n UlE ' RE HEADED

FOR SHELTER, ":

GOSUB 750

1020 VTAB 14:

PRINT " UE RODE OUT THE

STORM, TAIPAN! ":

GOSUB 7fl0

1021 IF RND (1) > .5 THEN n0

1022 GOTO 12T0

Nicholas lquan

T A I P A N
A Historical Adventure for the Apple® Computer

Piratical Princes of the Eastern Seas
CHAPTER FOURTEEN

Piracy is defined as the robbery of ships on the high seas.

Along the China Coast, the institution of piracy has a long and fasci¬
nating history. Almost all Western piracy occurred during its Golden Age
from the mid-seventeenth century to the mid-eighteenth century, and
was mainly concentrated in raids against Spanish colonial towns and
shipping on the Caribbean and Atlantic. In contrast, the tradition of
piracy on the China Seas has covered a much longer period. The pirates
of East Asia have operated for over two thousand years in the China
Seas, especially in the zone from Hainan island to the Formosa Straits.
(Piracy is still something of a problem around Hongkong, though only a
part-time occupation of a few mariners.)

What most distinguished the pirates of the China Coast from the buc¬
caneers of the West was their organization and power. Whereas the few
hundred buccaneers of the Caribbean usually operated lone ships, and
with frequent mutinies among the pirate crews, the East Asian pirates
were often organized into massive fleets, with hundreds of thousands of
men and thousands of pirate craft.

139

140 TAIPAN: A Historical Adventure for the Apple Computer

Without doubt, history's most successful pirate was Kao Hsing-Yeh
(1624-1662), better known to the English-speaking by the name "Kox-
inga", to the Spanish as "Cotsen", and to the Japanese as "Kokusen-ya".
To properly understand Koxinga, we must first understand his father.

Koxinga's father was born about 1600 in the small village of Anhai, in
China's Fukien province. A poor tailor by trade, the young man who was
to become the father of Koxinga headed south from his natal village to
seek his fortune in the Portuguese colony of Macau, where he arrived in
1621. There he became a Christian, and was baptized "Gaspar Nicholas".

In Macau this clever young man became better known as Nicholas
Iquan. Macau provided the youth with opportunities far beyond those of
his home village. He learned Portuguese, then the trade language of East
Asia. Soon, Nicholas was to meet a famous Chinese trader, the so-called
"Captain China".

Arriving in 1622 at Captain China's Japanese trading headquarters in
Hirado, near Nagasaki, Nicholas Iquan went to work for Captain China.
He quickly learned to speak Japanese. Nicholas married a Japanese
woman, probably of minor samurai family origin. This woman is known
to history only by her family name, Tagawa. In 1624, Nicholas Iquan's
wife bore a son, who was in Japan called Tagawa Fukumatsu, and raised
him for his first six years in Japan, teaching him the Japanese concepts of
loyalty and duty.

Nicholas Iquan was soon deeply involved in the far-flung trade — and
part-time piracy — of his employer. Captain China himself had been bap¬
tized as a Christian, and had escaped from life as a galley slave of the
Spanish in the Philippines years before. Captain China had built up a
fleet of hundreds of ships, and competed vigorously with the Dutch in
the Japan trade, spreading his trading, smuggling and pirating business
to countries as distant as Vietnam and Cambodia.

Nicholas Iquan became the most trusted member of Captain China's
organization, leading trading voyages involving many ships at a time. In
1624, Nicholas appeared in the Pescadores Islands, in the Formosa Strait,
and offered his services as translator to the Dutch, who had their local
base there.

As Captain China had urged them to do, the Dutch moved their trad¬
ing base to Formosa (Taiwan), then a wild and beautiful island inhabited
almost entirely by primitive native tribesmen. The Dutch encouraged
Chinese settlers to immigrate to Formosa. Nicholas Iquan, using his posi-

Piratical Princes of the Eastern Seas: CHAPTER FOURTEEN 141

tion as a Dutch employee, was able to make a modest extra income from
bribes paid to him from the settlers.

Then, in 1625, Captain China died. Nicholas Iquan deserted the
Dutch, and moved in on the trader's empire. He killed off supporters of
Captain China's legitimate heirs. In a few months, Nicholas controlled
the late merchant's four hundred ships. Nicholas Iquan set up his head¬
quarters in his home village of Anhai, and divided his fleet into small,
strategically located forces.

By 1627, Nicholas Iquan controlled most of the coast of China, and
sacked both Chinese cities and European ships at will. Ships were
charged a large annual tribute for safe passage. Portuguese ships were
fair game to this mighty pirate, and even his former employers, the
Dutch, were targeted. A Dutch punitive fleet of nine men-of-war was
sent to destroy his ships at the port of Amoy, but the wily pirate defeated
them, and the Dutch squadron fled to Java.

This pirate built a splendid palace for himself at Anhai. His six-year-
old son was summoned from Japan to learn the family business, and thus
"Tagawa Fukumatsu" was renamed "Cheng Cheng-kung". Nicholas's
son became a fine scholar, and enrolled in the Imperial Collegiate School
at age fifteen.

Nicholas Iquan surrounded himself with an elite personal guard of
three hundred tough and loyal black Africans, former slaves who had
escaped Portuguese bondage in Macau.

In 1628, the Ming emperor of China had had enough of this nuisance,
and neatly soled his problem by giving Nicholas Iquan the rank of a man¬
darin, and made him Admiral of the Imperial fleet.

But the Manchus were moving south, bit by bit defeating the weaken¬
ing Ming dynasty. In 1644, the desperate Ming gave Nicholas Iquan the
title, "Count Pacifier of the South", and soon afterward ennobled him as
a duke.

Nicholas Iquan was by now joined by his Japanese wife, whom he'd
not visited for twenty-one years.

Seeing the fortunes of the Ming declining, Nicholas Iquan became a
turncoat. With his elite bodyguard of three hundred exotic and strikingly
uniformed blacks, he went to Foochow in 1646 to negotiate the terms of
his treason with the advancing Manchus. There he was himself betrayed
by the Manchus. After a fierce battle in which more than a third of his

142 TAIPAN: A Historical Adventure for the Apple Computer

African soldiers died in his defense, Nicholas Iquan was taken captive.
He was kept in comfortable house arrest in the Manchu capital of Peking
until 1661, when he was beheaded.

Immediately after the surrender of Nicholas Iquan, his wife committed
suicide rather than collaborate with the Manchus. This act was not only
considered honorable in the Japanese tradition, but it was respected by
the Chinese as well.

Now a young man in his early twenties, Cheng Cheng-kung had loved
his mother despite their long separation. He burned his scholar's robes,
vowing to remain loyal to the failing Ming cause. Cheng gathered a small
guerilla band and fought his way to the coast, enlisting his father's
former land forces along the way. Within a brief time, he had control of all
Nicholas Iquan's land and naval forces. By the time he was twenty-two,
Cheng Cheng-kung was a powerful force on both land and sea, control¬
ling the greater part of China's coast and all the China Seas.

The Ming, being defeated everywhere by the Manchus, created Cheng
Cheng-kung first an earl, then a marquis, and finally a prince. He
opposed the Manchus with vigor, yet looted shipping in the old pirate
fashion all the while. In this period, Cheng Cheng-kung was given the
honorary name of "Kao Hsing-yeh", which the Dutch have passed on to
us as "Koxinga".

Koxinga first centered his activities along the ragged, rugged coasts of
China's southeastern provinces of Fukien and Kwangtung. His fleets
were said to be able to cover the sea from horizon to horizon. Koxinga's
fleets completely dominated the Manchu naval forces, and he carried on
massive, devastating raids upon Manchu-held coastal cities of central and
south China.

These raids were so troublesome, the Manchu emperor actually had
the whole coastal area of the two ravaged provinces (a shoreline over a
thousand miles in length) completely evacuated, with the entire popula¬
tion moved more than ten miles inland, on just three day's notice. The
manchus had watchtowers, one hundred soldiers manning each tower,
set up three miles apart all along the coast. Whole cities, farms, fishing
villages and ports were burned to the ground. Half of the evacuees died
of starvation, and many of the others were sold into slavery. Anyone
found near the coast was promptly beheaded without trial.

This bizarre and unique solution was enforced for nineteen years, by
Imperial edict.

Piratical Princes of the Eastern Seas: CHAPTER FOURTEEN 143

Koxinga turned in frustration to ousting the Dutch from their base at
Fort Zeelandia on Formosa, invading the island in force.

The Dutch were widely known for their tenacity in holding their fac¬
tory posts against heavy odds. But the Dutch governor of Formosa, Fred-
erik Coyett, had not been given the support he'd requested from the
colonial authorities in Batavia. Though able to hold out for nine bitter and
hungry months against thirty-to-one odds, Coyett eventually surren¬
dered to Koxinga in 1661. Koxinga treated the defeated Dutch with honor
and mercy, allowing them to withdraw in safety from the island. The eve¬
ning of the Dutch surrender, Koxinga pronounced himself King of For¬
mosa.

Only a bit more than two hundred miles south of Formosa lay the Phil¬
ippines. There, Chinese residents had for many years undergone perse¬
cution and periodic genocide. Koxinga felt protective toward these
Chinese, and he sent word to the Spanish in Manila that they must either
pay him tribute, or be invaded. The Spanish refused, and, unfairly
assuming that all the Chinese living in Manila were conspiring with Kox¬
inga, they massacred the local Chinese. This genocidal attack enraged
the pirate king. Koxinga was planning his conquest of the Philippines
when he died, maddened by a fever, on July 2, 1662, at the age of thirty-
seven.

In 1700, the Manchus, having conquered China, officially praised Kox¬
inga, their deceased enemy. Now in the position of an established
dynasty, the Manchu emperor lauded Koxinga as loyal dynastic defender,
urging his subjects to follow the pirate's example. In 1875, the Manchus
actually deified Koxinga as the God of Loyalty and Fidelity! The Japanese
in 1898 inducted Koxinga as a Shinto god, while using his half-Japanese
heritage as a pretext for their occupation of Formosa.

Since the time of Koxinga, piracy has never again been as enormous an
enterprise. Yet it has persisted, with major surges during times of disrup¬
tion. By 1800, it is said that there were two squadrons of pirate ships
operating off the South China coast, together totaling more than 600
junks and 60,000 pirates of international origin. The Opium Wars, and
the disorder caused by them, caused another increase in piracy in the
1840s.

In the game of Taipan, piracy as a factor is exaggerated for game pur¬
poses. Yet pirates were still a serious consideration in the 1860s. Nearly
every Chinese or foreign cargo ship plying trade on the China seas car-

144 TAIPAN: A Historical Adventure for the Apple Computer

ried either jingals (swivel-mounted blunderbusses about seven feet long
and weighing only twelve pounds) or Western cannons, for use against
pirates.

Crews carried axes, spears, pistols and rifles with which to repel
boarders. Bullet-proof shields to protect helmsmen were standard equip¬
ment on seagoing junks. Even the great clipper ships would sometimes
fall prey to oar-driven pirate junks, should they find themselves
becalmed.

With the advent of steamships, craft invulnerable to being boarded in
windless seas, pirates found new ways of preying on shipping. Pirates
would board a steam vessel in port, disguised as normal paying passen¬
gers. When the ship was at sea, and the time seemed ripe, the pirates
would pull out guns, knives, hatchets and clubs, taking over the bridge
and the engine room. The passengers, crew and cargo would be robbed,
rich passengers kidnapped for ransom, and the pirates and their material
and human booty would disappear overboard into waiting "fishing"
craft, which had rendezvoused by pre-arrangement.

In our game of Taipan, we assume that the (fictional) pirate Li Yuen is
powerful, but not nearly so strong as some of the historic pirates of the
Orient. Thus he is not able to fully control his competitors in the piracy
business. Still, a payment of tribute to Li is worthwhile just to keep him
off our backs, and he may be able to protect us from rival pirate gangs.

Yamato

T A I P A N
A Historical Adventure for the Apple® Computer

Stand by the Swivel Guns!
CHAPTER FIFTEEN

These lines are the Pirates routine:

10BS REM PIRATES (1030-1261)

1030 HOME:

ID = INT (RND (1) * 2) + 1:

GOSUB 52^0:

P = INT (RND (1) * (dlil / 25) * 2 a (ID * 2))

+ INT (RND (1) * 3) + l:

HTAB l:

VTAB 17:

PRINT P^" PIRATE CRAFT SIGHTED!":

GOSUB 7fl0:

GOSUB 1100

147

148 TAI PAN: A Historical Adventure for the Apple Computer

Line 1030 determines how may pirates will be encountered, and
whether they are part of Li Yuen's fleet or independents.

(With GOSUB 5290, it also starts the Sea Action subroutines, to make
the pirates appear on the screen. At the end of the book, we'll cover all of
the Sea Action subroutines, which have line numbers of from 5000 to
6360. We'll largely ignore these GOSUBs for the moment.)

Remember that it's very likely that this line, like those in the Storm
routine, won't be used at all in any particular voyage, as line 981 may
have passed it by completely. If we do see pirates, there'll be a 50%
chance they will be either Li Yuen's gang or independent scoundrels. The
variable "ID" is used to flag the identity of the pirates: a value of 1 stands
for independents, and 2 represents Li Yuen's jolly crew. The second part
of line 1030 is a complicated formula which determines P, the number of
pirate craft encountered. This number is based upon the size of our ves¬
sel (MW, the maximum cargo capacity of the ship), whether or not we've
met Li Yuen's bully boys (they normally travel in much larger fleets), and
a random factor.

The rest of this line simply tells us that we've sighted "P" number of
pirate ships, and GOSUBs 1100, where the Ship Status subroutine starts.
Here's the Ship Status subroutine:

1055 REM SHIP STATUS SUBROUTINE (1100-1110)

1100 HTAB is

VTAB lb:

INVERSE:

PRINT A*:,:

NORMAL:

PRINT " GUNS: "nGi" REPAIR:"i:

IF SR < 0 THEN SR = 0

1110 PRINT INT (SR * 100)=,"/: ":

PRINT "SHIPS ENCOUNTERED:"^:." ":

Stand by the Swivel Guns!: CHAPTER FIFTEEN 149

PRINT

PRINT A$i:

PRINT A$i:

RETURN

This subroutine shows us how the battle, if any, is going for us. We'll
be calling this subroutine from several points in the Pirates routine. It dis¬
plays the number of guns with which our craft is armed, our ship's state
of repair (which must stay above 10% for us to stay above the surface of
the deep blue sea), and shows the number of pirate ships encountered at
any time.

The variable "SR" is a number which will never be more than 1, and
keeps track of the state of repair of our ship. Line 1100 makes sure that
the value of SR never is below zero before being displayed. In line 1110,
the state of repair is displayed as SR times 100, in order to give us the
state of repair as a percentage figure. We then RETURN to line 1030.

The next lines in the Pirate routine are 1040 and 1041:

1040 IF ID = 1 THEN VTAB 11:

PRINT " LOOKS LIKE INDEPENDENT PIRATES.":

G0SUB ?ao

1041 IF ID <> 1 THEN VTAB 11:

PRINT B$i:

HTAB l:

PRINT " THERE'S "iLY$i"'S BANNER!":

G0SUB 7fl0

All we're doing in these lines is displaying the identity of the pirates.

Line 1050 handles the possibility that we've not only encountered
independent pirates, but that Li Yuen's fleet has come up and driven off
the "poachers":

150 TAI PA N: A Historical Adventure for the Apple Computer

1050 GOSUB 1100:

IF ID = 1 AND RND (1) > -55

THEN VTAB IT:

PRINT B$i:

HTAB l:

PRINT " "iLYS^'S FLEET DROVE'EM OFF!":

GOSUB blOO:

P = P * INT (RND (1) * 10) + b:

ID = 2:

GOSUB 5250:

GOSUB 1100:

IF TR = 0 THEN 1070

When this line operates, independent pirates will be chased away by Li
Yuen's fleet 5% of the time. But since we'll be looping back to this line
probably several times during any pirate encounter, there's a real good
chance that Li Yuen's fleet will appear to banish the interlopers. Notice
that 1050 sets the number of ships in Li Yuen's fleet as being the integer of
"RND (1) * 10" multiplied by the number of independent pirates, then
adds another six. In other words, Li's fleet will be anywhere from one
times the size of the independent fleet (plus five), to ten times (plus five).

/ After calling the appropriate subroutine in the Sea Action section of
the program (GOSUB 6100), line 1050 then gives us a Ship Status update,
sets the ID flag to 2, to indicate Li Yuen's fleet, and checks whether we're
"paid up" with Li Yuen's favorite charity. If we're not in good standing

with Li (TR = 0), we go to line 1070.

Lines 1060 and 1061 only operate if the pirate fleet encountered is that
of Li, and we're paid up with that gentleman:

10b0 IF ID = 2 AND TR = 1 THEN VTAB 15=

PRINT "THEY GREET US-. AND SAIL OFF- ":

GOSUB bl00:

P = 0:

GOSUB 750:

IF RND (1) > -A THEN 1030

Stand by the Swivel Guns!: CHAPTER FIFTEEN 151

10L1 IF ID = 2 AND TR = 1 THEN 1E10

As we can see, if the pirates on hand are Li's fellows (ID = 2), and
we've paid tribute recently enough (TR = 1), the pirate fleet departs
peacefully (P = 0). Then, twenty percent of the time, this line starts look¬
ing for the possibility of further pirate troubles, by looping back to 1030.
If we luck out, however, the program branches from 1061 straight to the
Arrival routine at 1290.

The much less pleasant possibility is that we are in bad stead with Li
Yuen, either by refusing to help him build his temple, or by being so
unfortunate as to be caught with an "expired" contribution. (How such a
contribution can expire will be explained when we later cover the Arrival
routine and the Update subroutine.) For whatever reason, we're in trou¬
ble with Li Yuen now.

Line 1070 shows us that Li's minions, Yamato and Smythe, are less
than pleased to meet us:

1070 IF CR = 0 AND TR = 0

AND ID = S THEN CR = 1:

VTAB 11:

PRINT

HTAB 1:

PRINT " ARE CURSING US!n:

G0SUB 7fl0

Note the use of the flag CR, which is used for no other purpose than to
make certain that a well-worded curse isn't over-used each time the pro¬
gram goes past this line. One curse by the likes of Yamato and Smythe is
enough to last a voyage.

The following lines demonstrate that Mssrs. Yamato and Smythe are
capable of more than mere words:

lOflO VTAB 11:

PRINT " THEY'RE FIRING ON US! ":

G0SUB 53A0

152 TAIPAN: A Historical Adventure for the Apple Computer

lOfll IF INT (RND (1) * P) + 1 >

INT (RND (1) * 5) + 1 THEN GOSUB 5540:

VTAB 11:

PRINT B$i:

HTAB l:

PRINT " THE BUGGERS HIT US!":

SR = SR - C RND (1) /

(HU / (INT (RND (1) * 50) + 1))):

GOSUB 7fl0:

GOSUB 1100:

GOTO 10^0

lOflE VTAB n:

PRINT " HISSED US-. TAIPAN!

GOSUB 7fi0

Holey waterline! This is getting serious. These lines handle the gunfire
of not only Li's fleet, but that of independents, as well. The "IF INT
(RND (1) * P) + 1 > INT (RND (1) * 5) + 1 THEN..." part is used as a
method of making it more likely that a large attacking fleet will hit us
than would a smaller fleet, during any given salvo. The figure of "5" is
arbitrary, arrived at through trial and error, as a reasonable factor to help
give us the accuracy of the attackers. An attacking force of more than five
will usually hit us during a salvo, and a smaller force will usually miss us.

Next, line 1081 determines the damage done if we're hit. SR, we'll
recall, represents the state of repair of our ship. When we leave port, this
figure is 1, and any damage done to our ship makes SR a decimal frac¬
tion. Damage is computed in line 1081 by subtracting a decimal fraction
from SR. The fraction to be subtracted from our ship's state of repair is
determined by first dividing the figure MW (the maximum capacity, or
size, of our ship) by an integer between one and fifty. After this first divi¬
sion is made the resulting figure is used to divide "RND (1)" (a random
fraction), and the result of that division gives us a fraction (usually a small
one), which is subtracted from our state of repair, to give us a smaller

value for SR.

Stand by the Swivel Guns!: CHAPTER FIFTEEN 153

The purpose of this fairly complex formula is simply to assure that if
we have a large ship, we're likely to be less damaged by a single salvo
than would a smaller ship.

After the damage is computed, line 1081 then GOSUBs 1100 to display
the new Ship Status. But if the pirate salvo missed us, that delightful
information is supplied to us instead by line 1082.

Now come even more ominous program lines:

101D IF SR < .1 THEN GOSUB 7AQ:

VTAB 11:

PRINT " WE’RE GOING UNDER-, TAIPAN!

GOSUB H21Q:

X$ =

GOTO 1300

1011 GOTO 1120

These are lines we promised to cover later, back when we went
through the Storm routine. Before we went to line 1090 from the Storm
routine, we'd set SR to 0.

For whatever reason our ship is now sinking, we'll always make an
extended visit to Davy Jones' Locker Club if our state of repair (SR) is less
than .1 (10% state of repair when displayed on the screen by the Ship Sta¬
tus subroutine).

X$ is made to hold a null string (nothing), in order that the That's All
Folks routine starting at 1300 will never see it holding an "R", which
would have been the case if we'd pressed "R" for Retire to reach 1300
from the Market routine. (We don't want to be given a chance to continue
where we "left off", if we're really supposed to be goners!)

If we didn't sink this time, we move along to lines 1120, 1121, 1122 and
1123:

154 TAI PAN: A Historical Adventure for the Apple Computer

USD VTAB IT:

PRINT " SHALL WE R)UNn F)IGHTn OR P)ARLEY?":

GOSUB bO:

IF X$ = "R" THEN X = 1

11S1 IF X$ = "F" THEN X = S

USE IF X$ = "P" THEN X = 3

1123 IF X$ <> "R" AND X$ <> "F" AND X$ <> "P"

THEN GOSUB 77D:

GOTO USD

At last, we'll get to do something about these dratted pirates!

After line 1120 asks us whether we wanted to Run, Fight or Parley, we
are left with the value of 1, 2, or 3 in the flag X.

Line 1130 routes the program flow to the appropriate lines:

1130 ON X GOTO 1140 t llbOi1ED0

If our choice was to Run, the value of variable X would be 1, and we'd

GOTO line 1140:

HMD IF SR < = RND (1) AND INT (RND (1) * b) + 1

< = INT (RND (1) * P) + 1 THEN USD

1141 IF SR > RND (1) AND INT (RND (1) * b) + 1

> INT (RND (1) * P) + 1 THEN 1143

114E GOTO USD

1143 GOSUB bEEO:

VTAB Ifl:

PRINT " WE ESCAPED FR0H ’EH TAIPAN!

Stand by the Swivel Guns!: CHAPTER FIFTEEN 155

P = 0:

GOSUB ?flO:

GOSUB HDD:

IF RND (1) > -fl THEN 1D3D

1144 GOTO 1250

The variable SR, of course, is the state of repair of our ship. It is always
zero and one, inclusively, and it indicates the general condition of our
vessel. Line 1140 first takes SR and compares it to a random fraction. If SR
is less than or equal to RND (1), and RND (1) * 6 (plus one) is also less
than or equal to RND (1) * P (plus one), then we haven't escaped the
pirates this round ("THEN 1150"). More simply put: there are two factors
which increase the player's chances of getting away from the pirates: a
high state of repair (SR), and a low number of pirates (P).

If we've escaped, we're routed to line 1143, where a message to this
effect is displayed. The number of pirates is reduced to zero (P = 0), and
the Ship Status subroutine is run ("GOSUB 1100"). But there's always a
chance that we'll see more "sea trouble", so two times out of ten, we'll be
routed back to 1030, where we'll have another chance to get wiped out. If
there is not further chance of storm or pirates, line 1144 routes us to the
Arrival routine (1290), and we're home free, filled with noble sentiments
about discretion and valor.

But if we haven't been able to run away from all of the pirate ships,
lines 1150 and 1151 handle the other two options:

1150 IF SR > RND (1) AND RND (1) > . t, THEN

P = P - INT (INT ((RND (1) * P) + 1) / 2):

GOSUB 1)220:

GOSUB 5250:

VTAB 15:

HTAB l:

PRINT Pi" OF 'EH STILL WITH US!

GOSUB 760:

GOSUB 1100:

GOTO 1050

156 TAI PAN: A Historical Adventure for the Apple Computer

1151 VTAB 15:

PRINT " CAN’T SHAKE ’EH!

GOSUB 7fiQ:

GOTO 1050:

These lines take care of either the possibility that we got away from part
of the pirates (line 1150), or that we couldn't lose any of them (line 1151).
The complicated first part of line 1150 bases our chances of escaping some
of the pirate fleet partially upon our state of repair. And the number of
pirate ships still with us, should we be so lucky, is set to be at least half
the original number. Like many of the routines in Taipan, we here have to
carefully balance ease versus difficulty. The chance of losing the pirates
on any one run-through is very low. But we'll be going through these
lines as long as our ship is afloat, and still trying to escape. So we want
the chance of escape to be quite low each time these lines are run.

Here are the lines we've waded through in this chapter:

1025 REN PIRATES (1030-1261)

1030 HOME:

ID = INT (RND (1) * 2) + l:

GOSUB 5250:

P = INT (RND (1) * (HU / 25) * 2 a (ID * 2))

+ INT (RND (1) * 3) + l:

HTAB l:

VTAB 17:

PRINT Pi" PIRATE CRAFT SIGHTED!":

GOSUB 760:

GOSUB 1100

1040 IF ID = 1 THEN VTAB 15:

Stand by the Swivel Guns!: CHAPTER FIFTEEN 157

PRINT " LOOKS LIKE INDEPENDENT PIRATES-":

GOSUB 7A0

1041 IF ID <> 1 THEN VTAB 11:

PRINT B$=,:

HTAB l:

PRINT " THERE'S "iLV$i"'S BANNER!":

GOSUB 760

1050 GOSUB 1100:

IF ID = 1 AND RND (1) > -IS

THEN VTAB 11:

PRINT B$i:

HTAB l:

PRINT " "nLY$i"'S FLEET DROVE'EII OFF!":

GOSUB blOO:

P = P * INT (RND (1) * 10) + b:

ID = E:

GOSUB 5E10:

GOSUB 1100:

IF TR = 0 THEN 1070

lObO IF ID = E AND TR = 1 THEN VTAB 11:

PRINT "THEY GREET US-, AND SAIL OFF- ":

GOSUB blOO:

P = 0:

GOSUB 7AD:

IF RND (1) > -fl THEN 1030

10bl IF ID = E AND TR = 1 THEN 1E10

158 TAIPAN: A Historical Adventure for the Apple Computer

107D IF CR = 0 AND TR = 0

AND ID = 5 THEN CR = 1:

VTAB 11:

PRINT B*i:

HTAB l:

PRINT " "=,YS$i" ARE CURSING US!":

GOSUB 7flD

lUflO VTAB 11:

PRINT " THEY’RE FIRING ON US!

GOSUB 5360

lOfil IF INT (RND (1) * P) + 1 >

INT (RND (1) * 5) + 1 THEN GOSUB 5540

VTAB 11:

PRINT B$i:

HTAB l:

PRINT " THE BUGGERS HIT US!":

SR = SR - (RND (1) /

(Mill / (INT (RND (1) * 50) + 1))) :

GOSUB 7flO:

GOSUB 1100:

GOTO 10*10

1085 VTAB 11:

PRINT " MISSED US-, TAIPAN!

GOSUB 7fl0

10*10 IF SR < .1 THEN GOSUB 7A0:

VTAB 11:

PRINT " WE'RE GOING UNDER-, TAIPAN!

GOSUB hBIO:

X$ = "":

GOTO 1300

Stand by the Swivel Guns!: CHAPTER FIFTEEN 159

Itm GOTO 1120

1015 REM SHIP STATUS SUBROUTINE (1100-1110)

1100 HTAB l:

VTAB lb:

INVERSE:

PRINT A$i:

NORMAL:

PRINT " GUNS: "iGi" REPAIR:0'-,:

IF SR < 0 THEN SR = 0

1110 PRINT INT (SR * 100)i"*

PRINT "SHIPS ENCOUNTERED:°iPi" °:

PRINT A$i:

PRINT A$i:

PRINT A$i:

RETURN

1120 VTAB IT.

PRINT ° SHALL UE R)UN-, F) IGHT OR P)ARLEY?°:

GOSUB bO:

IF X$ = "R" THEN X = 1

1121 IF X$ = "F" THEN X = 2

1122 IF X$ = "P" THEN X = 3

1123 IF X$ <> "R" AND X$ <> "F" AND X$ <> "P"

THEN GOSUB 770:

GOTO 1120

1130 ON X GOTO im01llb011200

160 TAI PA N: A Historical Adventure for the Apple Computer

imo IF SR < = RND (1) AND INT (RND (1) * b) + 1

< = INT (RND (1) * P) + 1 THEN 1150

1141 IF SR > RND (1) AND INT (RND (1) * b) + 1

> INT (RND (1) * P) + 1 THEN 1143

114E GOTO 1150

1143 GOSUB bEEO:

VTAB Ifi:

PRINT " UE ESCAPED FROM 'EM TAIPAN!

P = 0:

GOSUB 7fl0=

GOSUB 1100:

IF RND (1) > -fi THEN 1030

1144 GOTO lETO

1150 IF SR > RND (1) AND RND (1) > -b THEN

P = P - INT (INT ((RND (1) * P) + 1) / 3):

GOSUB bEEO:

GOSUB SETO:

VTAB 11:

HTAB 1:

PRINT Pi" OF 'EM STILL WITH US!

n .

GOSUB 7fl0:

GOSUB 1100:

GOTO 1050

Stand by the Swivel Guns!: CHAPTER FIFTEEN

1151 VTAB n:

PRINT " CAN
n ■

GOSUB 7fl0:

GOTO 1Q5Q:

•T SHAKE 'EM!

Koxinga

T A I P A N
A Historical Adventure for the Apple® Computer

More Pirates
CHAPTER SIXTEEN

The "Run" choice sends us to lines 1160 and 1161:

llbO VTAB 1R:

PRINT " UE'RE FIRING ON 'EM!

GOSUB 5540:

IF INT (RND (1) * (G + 1)) + 1 > INT (RND (1) *

4)

THEN VTAB 1R:

PRINT B^i:

HTAB l:

PRINT "HIT 'EM!":

GOSUB 5t>fl0:

GOTO 1170

163

164 TAIPAN: A Historical Adventure for the Apple Computer

llbl VTAB 11:

PRINT " HISSED 'EM! ":

GOSUB 7fl0:

GOTO 1110

Here the factor which tunes the accuracy of our shots at the pirates is
the number of guns we have. The more guns, the more likely we are to hit
pirates.

The next lines determine the effect of our hits on the pirates:

1170 NK = RND (1) :

IF NK > .4 THEN IF P > = G THEN

X = : INT (INT ((RND (1) * (G - 1)) + 1) / 3) + 1

1171 IF NK > .4 AND P < G THEN X = INT (RND (1) * P)

+ 1

1172 IF NK < = .4 THEN VTAB 11:

PRINT " THEY'RE STILL AFLOAT.":

GOSUB 7fl0:

GOTO HID

Line 1170 sets a value to variable "NK", which will, with other factors,
determine the effect of our guns: a value of more than .4 is needed for any
pirate craft to be sunk. If none were, line 1172 operates, and we're given
the display which tells us we haven't sunk any ships. Otherwise lines
1170 and 1171 have to figure out how many pirate craft we've sunk. They
do this by first figuring if there are at least as many pirate ships as we
have guns (. . . IFP > = G THEN X = INT (INT ((RND (1) * (G -1))+ 1) /
3) + l . . .). If there are pirate ships in numbers greater than or equal to
the number of guns we have, then, clearly, we can't possibly sink them
all with one salvo. This portion of line 1170 sets X to the number actually
sunk by our fire.

If there are less than one pirate craft for each of our guns, line 1171 sets
X to a random number between one and the total number of pirate ships
(. . . X = INT (RND (1) * P) + l . . .).

More Pirates: CHAPTER SIXTEEN 165

The victims of our blazing gunfire are noted and subtracted from the
total number of pirate ships in 1180:

1130 P = P - X:

VTAB 11:

PRINT " SANK "iXi" OF 'EM-, TAIPAN!":

GOSUB 5A30:

IF P > 0 THEN GOSUB 521D

We must now determine whether there are any pirate vessels left.
Lines 1190 through 1193 do this for us:

1110 GOSUB 1100:

IF P = 0 THEN IF RND (1) > .5 THEN 1270

1111 IF P = 0 THEN VTAB 11:

PRINT " THAT'S ALL FOR THE BUGGERS!":

GOSUB 7fl0:

IF RND (1) > -fl THEN 1030

1112 IF P = 0 THEN 1210

1113 GOSUB 7fl0:

GOTO 10S0

The first thing line 1190 does is to have the Ship Status subroutine
(1100) update the screen.

There is now a fifty-fifty chance that the program will go to 1270,
where the Capture routine is located. (This Capture routine, which we'll
describe soon, allows us to take control of a larger ship.) If no pirate ship
is captured, a display in line 1191 tells the player that the pirates are done
for. Then there is a one-out-of-five chance that line 1191 recycles us to
1030 for more pirates. Otherwise, line 1192 sends us directly to the Arrival
routine at 1290.

166 TAIPAN: A Historical Adventure for the Apple Computer

If we haven't defeated the pirates at all, line 1193 has us go back to 1050
to continue our confrontation.

Supposing we'd made a choice to Parley with the pirates, we'd be sent
by line 1130 to line 1200:

1200 IF RND (1) < -fl THEN VTAB 13:

PRINT " THEY REFUSE TO PARLEY-, TAIPAN-

G0SUB 760:

GOTO 1050

1201 VTAB 13:

PRINT " THEY AGREE TO DISCUSS TERMS- ":

G0SUB 7fl0

Each time we try to parley, there's about an 80% chance that the pirates
will have none of it, and they'll get a free shot at us in the bargain, when
we GOTO 1050. If they do agree to talk (line 1201), we continue to line 1210:

1210 IF P > G / 2 OR RND (1) > -7 THEN VTAB 13:

PRINT " THEY OFFER TO LET US GO IN EXCHANGE FOR"i:

PRINT "ALL OUR CASH- DO UE ACCEPT-, TAIPAN (Y/N)"i :

GOTO 1220

1211 GOTO 1240

Such a deal! Of course, the player must decide if this is an offer that can
be refused. If we have almost all our money invested in trade goods,
"your money or your life" may sound pretty attractive. But if we're dead¬
heading it back from Shanghai with an empty hold and three million in
cash from a big opium sale, we'd be a bit less interested — we might want
to put our lives on the line to protect that money.

More Pirates: CHAPTER SIXTEEN 167

The following lines process the player's decision:

1EE0 GOSUB t.0:

VTAB 11:

PRINT A$n :

PRINT A$i:

VTAB Ifl:

IF X$ = "V" THEN IF RND (1) > -2 AND

C> 100 + INT (RND (1) * 2000) THEN P = 0:

C = 0:

VTAB 11:

PRINT " THEY TOOK IT & RAN!":

GOSUB 7fl0:

GOSUB 1100:

GOTO isao

1EE1 IF X$ <> "Y" THEN 1050

IEEE C = 0:

VTAB 11:

PRINT " THEY STILL INTEND TO FIGHT!":

PRINT:

PRINT A$i:

GOSUB 7fl0

The first thing line 1220 does is to GOSUB 60, which gives us either a
"Y" held in X$, or any other keyboard character. For a simple decision
like this, we'll just consider anything but a "Y" to be a negative reply. But
simple though the decision may be, the handling is a bit complex.

To make the game more like the real world, it's best that the result of giv¬
ing in to the pirates' demands not be certain. These lines make it uncer-

168 TAI PAN: A Historical Adventure for the Apple Computer

tain by first giving about a 20% chance that the pirates will take our
money and s till continue attacking, then by checking whether our cash is
greater than an arbitrary random figure between 100 and 2100. Thus, if
the cash we offer the pirates for our safety is less than that random fig¬
ure, once again we'll continue to suffer the pirate attack. The amount of
money the pirates will consider enough will vary from time to time. The
pirates may consider our cash insufficient funds and refuse to leave us
alone. But they'll keep our money even while continuing their attack.

If the pirates consider our cash fair pay for the work they've done, line
1220 will GOTO 1280, at the end of the Pirate routine, and we're left

poorer but safer.

In two cases we'll get to line 1230: if we refused to fork over our money,
or if they took it and want our hides, as well.

1230 GOSUB 7fl0:

GOTO 1050

All this line does is to give a delay (GOSUB 780) to allow us to read the
last message, and route us back to the midst of battle, at 1050.

If there are less pirate vessels than the number of our guns divided by
two, and the "RND (1) > .7" part of line 1210 is "false", then the pirates
will try to give up:

1240 VTAB l:

HTAB 13:

PRINT SFL$ i:

VTAB 15:

PRINT " THEY OFFER TO SURRENDER. ":

GOSUB 7fl0:

VTAB 15:

PRINT " DO li)E LET THEM GIVE UP (Y/N)? ":

GOSUB L0:

IF X$ = "Y" THEN 12L0

Now we have a choice of continuing the battle, or allowing the pirates
to surrender. The last part of line 240 routes us to line 1260 if we accept

More Pirates: CHAPTER SIXTEEN 169

the surrender, otherwise (if we didn't accept the surrender) the program
flow falls through to line 1250, where there's a chance that a number of
pirate vessels will run off:

1250 IF RND (1) >

THEN E = INT

P = P - E:

GOSUB blOO:

VTAB 15:

PRINT B$i:

HTAB l:

PRINT Ei" OF

GOSUB 7fi0:

GOSUB 1100:

GOSUB 5250:

GOTO 1050

•5 AND P > 0

(RND (1) * P) + l:

’EM RAN AWAY!":

This line will half the time allow a number between one and all of the
pirate ships to flee, and will use the temporary variable E to indicate how
many got away. If one or more got away, we go back to line 1050 for
another cycle through the battle routine. If none escaped, we fall through
to line 1260:

12b0 IF RND (1) > .7 THEN VTAB 15:

PRINT " THEY'RE PREPARING TO ATTACK! ":

GOSUB 750:

GOTO 1050

So, even if the pirates have asked to surrender, and we've accepted
their offer, they might attack anyway. What we're trying to do here is to
account for some of the rich mixture of happenings which are found in
the real world of human beings. Nothing is certain when we're dealing
with people and the authors have designed Taipan with this in mind. If
the pirates betray us by attacking now, the program goes back to 1050 to
continue the carnage.

170 TAI PAN: A Historical Adventure for the Apple Computer

If the pirates are sincere in their surrender, the next line allows us to
take control of a captured ship, superior in size and armament to our

own:

12U5 REN CAPTURE (1270-1251)

1270 VTAB n:

PRINT n WE'VE CAPTURED A BIGGER SHIP!":

GOSUB 7b0:

VTAB 11:

PRINT " WE'RE TRANSFERRING TO IT NOW-":

GOSUB 7fl0:

G = G + INT (RND (1) * (G + 1)) + 1=

E = SH + INT (RND (1) * (SH + ISO)) + 1:

SH = SH + E:

NW = HW + E:

P = 0

The number of guns (G) we'll have on the new ship is determined by
"G = G + INT (RND (1) * (G +1)) +1", which gives us at least one more
than the number we had before, and as many as twice-plus-one the num¬
ber we had previously. The total cargo capacity of our ship's hold (SH) is
increased by the statements, "E = SH + INT (RND (1) * (SH 4-150)) +1
and "SH = SH + E", which make the available capacity of our new ship's
hold at least as large as our old one (plus one unit), and possibly as large
as double the original (plus one hundred and fifty units).
"MW = MW + E" adds the same increase on to the total capacity of our

hold (MW).

The next lines decide whether we've got more combat, we're being
sunk, or we're finally free of pirates and ready to enter port:

1260 IF SR < -1 THEN 1300

12fll IF P > 0 THEN 1050

More Pirates: CHAPTER SIXTEEN 171

Line 1280 checks if we have a state of repair (SR) of less than a tenth (or
10%). If that's true, it gets rid of our sinking hulk by hurling us into the
maelstrom of the That's All Folks routine at line 1300. Line 1281 simply
checks whether or not there are any pirate vessels left. If there are, we
must once again recycle through the combat routine, starting again at

line 1050.

If neither of these conditions are true, we fall through to line 1290, the
Arrival routine, which is the last part of the Voyage routine:

12B5 REM ARRIVAL (1250)

1250 CR = 0:

SR = l:

L = P0:

V(L) = V(L) + l:

B = 0:

K = 0:

G0SUB IbO:

HOME:

PRINT:

INVERSE:

PRINT A$i:

NORMAL:

PRINT n ARRIVING iL*(L)i" AFTER":

PRINT " A VOYAGE OF "iET’-i" DAYS-":

INVERSE:

PRINT A$:

NORMAL:

G0SUB 7fl0:

HOME:

GOTO 120

172 TAIPAN: A Historical Adventure for the Apple Computer

A whole slew of things have to be done at this point. First, CR, the flag
which indicates whether Yamato and Smythe have cursed us this time at
sea, is reset to zero. Next, SR is set to one, to indicate that any damage to
our ship is now repaired. L, the identity of the port we're visiting, is
made to equal PO, our chosen port o' call. (Of course, if a storm forced us
into a port for shelter, we didn't actually choose the value in PO.

Next, the number of times we've visited the port we're entering is
incremented by adding one to V(L). (Remember? We use the V(L) array in
the Records subroutine.)

The flag B, which indicates whether we've already borrowed from
Elder Brother Wu during our present time in port, is reset to zero, to
show we haven't done so. (This would only be important if we're in
Hongkong.) Yet another flag, K, is reset to zero to show that the Events
routine has not yet been run through for this port. (We'll discuss that rou¬
tine in a separate chapter.)

Line 1290 next GOSUBs 160. Lines 160 to 172 are the Update subrou¬
tine. Since they need to be explained now, here they are:

1SS REM UPDATE SUBROUTINE (lbO-172)

IbO ET = INT (ET + (ET * RND (1) / 3)):

GT = GT + ET:

D = D + INT (D * (ET / 3b0)) :

JD = JD + ET:

IF JD > 3L0 THEN JD = JD - 3b0:

Y = Y + 1

Ibl IF JD < 1 THEN JD = 1

170 PI = INT ((JD - 30) / 30) :

DA = INT ((((JD / 30) - INT (JD / 30))) * 30):

IF RND (1) > -TS THEN TR = 0

171 IF H < 0 THEN (1 = 0

More Pirates: CHAPTER SIXTEEN 173

175 RETURN

Except for the tail-end of this subroutine, all it does is calculate the date
after an ocean voyage, by adding ET (the elapsed time of the voyage in
days) to the date, and make any needed adjustments to the day of the
month (D), the month of the year (M), and the year (Y). While doing
these things, this monster also adds ET to GT (the game time, used in fig¬
uring a score). JD is used to help calculate the month and year, and can be
thought of as the "Julian date" — the number of days elapsed within a
particular year.

The end of line 170 will set the flag TR to zero at the end of five out of
one hundred voyages. The effect of this is that Li Yuen will then consider
that another payment is due — and we won't be under his "protection"
until he's paid again.

RETURNing to line 1290, we next display information showing where
we've arrived and how long it took us to get there. The Delay subroutine
is called in order to give us time to read the message, and we GOTO line
120, where our activities in the new port o' call can start.

Before going on, let's look at the lines we've covered together in this
chapter:

1SS REM UPDATE SUBROUTINE (lt.0-175)

IbO ET = INT (ET + (ET * RND (1) / 3)):

GT = GT + ET:

D = D + INT (D * (ET / 3b0)) :

JD = JD + ET:

IF JD > 3L0 THEN JD = JD - 3fc.Q:

V = Y + 1

Ibl IF JD < 1 THEN JD = 1

170 M = INT ((JD - 30) / 30):

DA = INT ((((JD / 30) - INT (JD / 30))) * 30):

IF RND (1) > -T5 THEN TR = 0

174 TAI PAN: A Historical Adventure for the Apple Computer

171 IF n < D THEN II = Q

172 RETURN

11LU VTAB n:

PRINT " WE'RE FIRING ON 'EM!

GOSUB 5540:

IF INT (RND (1) * (G + 1)) + 1 > INT (RND (1)

* 4)

THEN VTAB 11:

PRINT B$i:

HTAB l:

PRINT "HIT 'EM!":

GOSUB SbflO:

GOTO 1170

llbl VTAB 11:

PRINT " HISSED 'EM!

GOSUB 7fiD:

GOTO HID

1170 NK = RND (1):

IF NK > .4 THEN IF P > = G THEN

X = INT (INT ((RND (1) * (G - 1)) + 1) / 3) +

1

1171 IF NK > .4 AND P < G THEN X = INT (RND (1) *

P) + 1

1172 IF NK < = .4 THEN VTAB M:

PRINT " THEY'RE STILL AFLOAT.":

GOSUB 760:

GOTO ino

More Pirates: CHAPTER SIXTEEN 175

HAD P = P - X:

VTAB 11:

PRINT " SANK "=,Xi" OF 'EM-. TAIPAN!":

GOSUB 5630:

IF P > 0 THEN GOSUB 5210

1110 GOSUB 1100:

IF P = 0 THEN IF RND (1) > -5 THEN 1270

1111 IF P = 0 THEN VTAB 11:

PRINT " THAT’S ALL FOR THE BUGGERS!":

GOSUB 760:

IF RND (1) > -6 THEN 1030

1112 IF P = 0 THEN 1210

1113 GOSUB 760:

GOTO 1050

1200 IF RND (1) < -6 THEN VTAB 11:

PRINT " THEY REFUSE TO PARLEY-. TAIPAN- ":

GOSUB 780:

GOTO 1050

1201 VTAB 11:

PRINT " THEY AGREE TO DISCUSS TERMS- ":

GOSUB 780

1210 IF P > G / 2 OR RND (1) > -7 THEN VTAB 11:

PRINT " THEY OFFER TO LET US GO IN EXCHANGE

FOR" i :

PRINT "ALL OUR CASH- DO UE ACCEPT-. TAIPAN (Y/

N)"i :

GOTO 1220

176 TAIPAN: A Historical Adventure for the Apple Computer

1211 GOTO 1240

1220 GOSUB tiO:

VTAB n:

PRINT A$i:

PRINT A$i:

VTAB Ifi:

IF X$ = "Y" THEN IF RND (1) > -2 AND

C> 100 + INT (RND (1) * 2000) THEN P

C = 0:

VTAB 11:

PRINT " THEY TOOK IT & RAN!":

GOSUB 7A0:

GOSUB 1100:

GOTO 12A0

1221 IF X$ <> "Y" THEN 1050

1222 C = 0:

VTAB 11:

PRINT " THEY STILL INTEND TO FIGHT!":

PRINT:

PRINT A$i:

GOSUB 7fl0

1230 GOSUB 7A0:

GOTO 1050

1240 VTAB l:

HTAB 13:

More Pirates: CHAPTER SIXTEEN 177

PRINT SFL$t:

VTAB 11:

PRINT " THEY OFFER TO SURRENDER.

GOSUB 7fl0:

VTAB 11:

PRINT " DO UJE LET THEN GIVE UP (Y/N)f>

GOSUB fc.0:

IF X$ = "Y" THEN 12b0

1250 IF RND (1) > .5 AND P > 0

THEN E = INT (RND (1) * P) + 1=

P = P - E:

GOSUB blOO:

VTAB 11:

PRINT B$i :

HTAB l:

PRINT E'-." OF 'EM RAN AliJAY!":

GOSUB 7fi0:

GOSUB HDD:

GOSUB 5210:

GOTO 1DSD

lEbO IF RND (1) > -7 THEN VTAB 11:

PRINT " THEY'RE PREPARING TO ATTACK!

GOSUB 760:

GOTO 1050

12b5 REN CAPTURE (1270-1251)

178 TAIPAN: A.Historical Adventure for the Apple Computer

1270 VTAB 11:

PRINT " WE'VE CAPTURED A BIGGER SHIP!"

GOSUB 7G0:

VTAB 11:

PRINT " WE'RE TRANSFERRING TO IT NOW."

GOSUB 7fi0:

G = G + INT (RND (1) * (G + 1)) + 1:

E = SH + INT (RND (1) * (SH + ISO)) +

SH = SH + E:

MW = MW + E:

P = 0

1260 IF SR < .1 THEN 1300

12fil IF P > 0 THEN 1050

12fiS RE(1 ARRIVAL (1210)

1210 CR = 0:

SR = l:

L = PO:

V(L) = V(L) + l:

B = 0:

K = 0:

GOSUB IbO:

HONE:

PRINT:

INVERSE:

PRINT A**:

NORMAL:

More Pirates: CHAPTER SIXTEEN 179

PRINT " ARRIVING AFTER":

PRINT " A VOYAGE OF "^ETi" DAYS-":

INVERSE:

PRINT A$:

NORMAL:

GOSUB 7S0:

HOME:

GOTO 120

Lorcha

T A I P A N
A Historical Adventure for the Apple® Computer

Ships of the China Coast
CHAPTER SEVENTEEN

The last thing the Arrival routine did was to take the program all the way
back to the Main Display routine, which begins at line 120.

Line 120, we'll recall, was simple:

120 GOSUB 130:

GOTO 220

With “GOSUB 130", the Main Display information is displayed. Then
we GOTO 220, where the Market Prices are displayed.

But the first thing that line 220 does is to GOSUB 790. Remember
when, many chapters ago, we said we'd get to the Events subroutine

later? Well, it's later now.

The Events subroutine is where the occasional happenings of the game

are handled.

The first lines of the Events subroutine allow the player to “trade up"

to a larger ship.

181

182 TAIPAN: A Historical Adventure for the Apple Computer

But what type of ships did the taipans — and the East Asian pirates —
use? What actual craft might correspond to the 50-unit ship with which a
player starts a game?

One book which the Authors came across in our research, is a large,
beautifully illustrated work, purporting to be about "ships". Looking in
the index, we found but one reference to "junks". We looked at the
proper page, and found a definition something like this: "Junks are Chi¬
nese boats." That book had very little else to say about junks, though
every conceivable type of Western craft was treated in detail. This was
worse than a disappointingly brief treatment of junks — it was inaccu¬
rate: junks are Chinese ships, not boats. Any good sailor knows a boat is a
craft which is small enough to be placed aboard a ship. Sampans are Chi¬
nese boats, while junks are seagoing or riverine ships. Perhaps the
Authors should not have been surprised at the apparent ignorance of
those who'd written that book about ships. After all, hardly anything
about the largest nation on this planet is taken seriously by most West¬
erners. Junks are only one example.

The sampan (from the Chinese san pan, literally "three boards") is
known to have existed for over three thousand years. The Shang dynasty
(1766-1122 BC) had an ideograph for "boat", which was a simplified pic¬
ture of a sampan. These craft still can be found in Hongkong's Aberdeen
harbor, propelled efficiently by stern sweeps. A more modern form of
sampan is Hongkong's "walla-walla boat", which uses a hull similar to a
Western ship's gig. Also known as "Hongkong sampans", these little
craft have been used continuously since the earliest days of the Crown
Colony.

(One of the Authors was a young U.S. Navy sailor in the mid-1960s.
One night while on a rare overnight liberty in the Crown Colony, he had
— with the aid of several iron-gutted British swabs from the Singapore-
based submarine. Anchorite — nearly drunk Kowloon dry. Returning to
Hongkong island so late that the ferries had stopped operating, he can
even now remember stepping into a motorized walla-walla boat. But he
has no memory of crossing the harbor — or anything else, for that matter
— until he awoke the next morning in his bed at the Ascot Hotel.)

Junks themselves are of uncertain age, but have been around as ocean¬
going vessels at least from the time of the T'ang dynasty (618-916 AD).
While the Western world had fallen into feudalism and ignorance, Chi¬
na's T'ang empire was an enlightened civilization, with junks trading by
sea throughout East Asia.

Ships of the China Coast: CHAPTER SEVENTEEN 183

The Yuan (Mongol) dynasty (1260-1367) had huge junks longer than
one hundred feet. These, along with Korean ships, were used by Kublai
Khan's forces in their invasion of Japan. (The word Kamikaze, Japanese for
"Divine Wind", originated when a terrible typhoon — said to have been
called up by the Japanese Buddhist priest Nichiren — sank most of these
ships, saving Japan from the Mongols.)

By the early 1400s, Chinese junk fleets were trading and exploring as
far away from their homeland as India, Arabia and Africa.

Many maritime writers dismiss junks as "boats", and treat them con¬
temptuously. (Even the English word for them — junk — suggests this
contempt.) But G. R. G. Worchester, a British authority on the craft,
wrote in his fascinating book. Sail and Sweep in China, that Chinese junks
were probably at least equal to, if not better than, anything on the Earth's
seas up until about four hundred years ago.

Junks were built with watertight compartments and with rudders
which could be lifted in shallow water. Many could carry two or three
hundred tons of cargo, yet were built so they could navigate in only three
feet of water.

But the Chinese were very conservative in their naval architecture (as
with everything else). Once "perfected" the design of junks remained
completely unchanged for centuries. Junks are still economically impor¬
tant along the China coast and on China's vast inland waterway system.

When the Portuguese established themselves in Macau in the mid-
1500s, they were confronted with local pirates. Since Chinese admirals of
that time would rarely risk themselves against pirates, the Chinese relied
upon the Portuguese to combat the sea-rovers. The Portuguese and the
Chinese shipwrights of Macau, probably over a period of many years,
developed a hybrid type of ship, half Western and half Chinese: the
lorcha.

Lorchas were rigged with Chinese-style sails and Western-style hulls.
These beautiful and hard-working little ships were faster and could haul
more cargo than a junk of similar size, carrying anywhere from 40 to 300
tons of cargo.

Around the beginning of the 1800s, the Chinese arranged with the Por¬
tuguese to create a joint anti-pirate fleet, consisting of sixty Imperial Chi¬
nese war junks and six Portuguese lorchas. This fleet was to patrol the
mouth of the Pearl river and to suppress piracy. Soon most of Imperial

184 TAIPAN: A Historical Adventure for the Apple Computer

junks had actually joined the pirates. But those six tough little lorchas
defeated the pirates on their own!

The taipans of Hongkong used lorchas for carrying opium and other
goods in their trading and smuggling operations along the China coast.
The craft were ideal ships for rendezvousing with huge warehouse-like
receiving ships hidden in isolated inlets along the coast. From these
barges, fast oar-driven "dragon boats" could race the opium to shore
with little fear of interception by Chinese authorities. After the Yangtze
river was opened to foreigners in 1861, the versatile lorchas carried cargo
as far as 600 miles up that river.

The lorcha is the only type of ship to have a war named after one of its
kind. In 1856, the lorcha Arrow (which the British claimed was of
Hongkong registry), was seized by the Chinese. When the British com¬
menced military retaliations, the result was called "The Arrow War".

The last of the lorchas disappeared, Worchester suggests, during the
Second World War. They were filled with rock and were sunk across the
Yangtze river at Matung, to prevent the Japanese from using the river.

Since the lorchas were so effective against the pirates of the China
Seas, it stands to reason that the pirates themselves used some other
type of craft. The authors have come across references to pirates mas¬
querading as fishermen, so it seems certain that almost all of the pirate
craft were junks. The crews of pirate junks would pile fishing nets, cov¬
ered with thick leather, along the sides of the craft as an effective bullet¬
stopping barrier. The pirate junks were mainly the types of craft which
were used along Fukien and Kwantung provinces. These ships were of
deeper draft, and more seaworthy, than the junks of China's northern
climes. (The northern junks were built flat-bottomed in order to navigate
shallow waters common to northern ports and rivers.)

Although the graphics show no fine detail, you may like to know that
the pirate ships depicted by the routines in the "Sea Action" section of
this book represent large sea-going junks of Kwantung province.

The larger ships used by the China Transfer were European and Amer¬
ican sailing and steam craft. These ranged from little two-masted fore-
and-aft rigged schooners, through grimly and ugly — but reliable —
seagoing steamships, to the culmination of the Age of Sail, the magnifi¬
cent China Clippers.

Ships of the China Coast: CHAPTER SEVENTEEN 185

The clippers could, if the winds were fair, outrace any steamship of the
time. Tea clippers would carry nothing but tea, to prevent the odors of
other items from spoiling the delicate flavor of their precious cargo.
Opium clippers would speed their destructive cargo from Calcutta to
Hongkong, for distribution by lorchas to receiving ships along the China

coast.

But neither the beauty of the clippers, nor (in favorable winds) their
high speed, could save them from decline. The fact remained that winds
were not always favorable. It was also expensive to pay for the large crews
needed to handle the intricate sails of the clippers. (Some sea captains
would simply kidnap — "Shanghai” — crewmen needed for the China
trade, using such cost-effective management techniques as flogging to
force the involuntary sailors to work.) Gradually it grew more difficult for
clippers to compete against the "iron ships and wooden men" of the Age
of Steam. Since the day the first steamship in Asian waters, the
paddlewheeler, Forbes, arrived on the China coast in the middle of the last
century, the days of the clippers were numbered. But the doomed clip¬
pers continued to ply the seas, and new clippers were being built as late

as the first decades of this century.

Now the clippers are gone, the lorchas are scuttled, and the pirates
were few and far between. But the junks of the China Coast endure. They
were there first. Somehow, it would not be surprising if the junks out¬
lasted the supertankers and containerships of the present day.

Waiting for the ship to come in

T A I P A N
A Historical Adventure for the Apple® Compare'

Current Events
CHAPTER EIGHTEEN

Here are the first lines of the Events subroutine:

765 REM EVENTS SUBROUTINE (7H0-6S1)

7e10 IF K = 1 THEN RETURN

7H1 K = l:

X = 50 + INT (RND (1) * 100) + 1:

GN = INT (RND (1) * 3) +1:

XP = (X + (GN * 50)) * 100:

IF C < XP OR RND (1) < -75 THEN fl05

712 GOSUB 1340:

VTAB 12:

PRINT " A BROKER OFFERS TO TAKE YOUR":

PRINT "VESSEL IN TRADE FOR ONE WITH":

PRINT GN + Gi" GUNS & "iX + NliH" CAPACITY"

187

188 TAIPAN: A Historical Adventure for the Apple Computer

PRINT "FOR "iXPi" IN CASH. WILL YOU":

PRINT " ACCEPT (<Y> OR <N>)f"M

GOSUB bO:

VTAB IS:

IF X$ = "Y" THEN C = C - XP:

SH = SH + X:

MU = MU + X:

G = G + GN:

GOSUB 130:

This routine will allow the player to trade in one ship for a slightly
larger one with more guns. These lines operate only one time out of
four, if we just arrived in port, and if we have more than enough cash.

A "1" for the value of the flag K indicates that we've already gone
through the Events subroutine this time in port, and line 790 then
RETURNS us to the beginning of the Market Price routine at line 220. But
if we haven't gone through Events, line 791 sets K to 1.

Line 791 next sets both how much extra capacity (X) is in the new ship,
and how many more guns (GN) it has. Then the expense of the transac¬
tion (XP) is calculated. This is done by multiplying the number of addi¬
tional guns by 50, adding the result to the extra hold capacity, then
multiplying that sum by 100. If we then are rich enough and lucky
enough, we're offered the deal.

Line 800 continues the offer display, and (if we choose to trade in our
ship) the line subtracts the cost of the deal (XP) from our cash (C). It then
adds the amount of the extra capacity (X) to both our available hold space
(SH) and to our ship's total capacity (MW). The new guns (GN) are
added to our old (G), and we GOSUB 130 to update the screen in light of
the transaction.

Whether or not we're offered a larger ship, we'll continue the Events
subroutine:

60S GOSUB 1340

Current Events: CHAPTER EIGHTEEN 189

flio IF C > D AND D > EOOO AND RND (1) > -7

THEN GOSUB 1340:

VTAB IE:

PRINT "YOU'VE BEEN ATTACKED AND ROBBED

BY IRON LOTUS RUFFIANS-, TAIPAN!"'-,:

C = INT (C /3) :

GOSUB 7L>0:

GOSUB 130

Here we see a very good argument in favor of paying off our debts!
There's a chance that Elder Brother Wu's braves may rob us of one third
of our cash. This can happen if: 1) our cash is greater than what we owe
Wu, 2) we owe Wu more than 2000 in cash, and 3) we're unlucky. Wu's
Iron Lotus society has members in all of our ports o'call. We don't have to
be in Hongkong to be robbed. (Notice that our debt is not reduced if

we're mugged!)

The Events subroutine now continues to line 820:

fiEO GOSUB IflO:

GOSUB fiUD:

GOSUB no:

GOSUB 1340:

DN = INT ((C / E) * RND (1)) :

IF RND (1) > -fl AND TR = 0

AND L <> 0 THEN VTAB IE:

PRINT "A MESSENGER FROM " i L Y $ =>" ASKS":

PRINT "THAT YOU RETURN TO HONGKONG"

BE1 IF RND (0) > -a AND TR = 0 AND L <> 0 THEN

PRINT "WITHOUT DELAY-, TAIPAN-":

GOSUB ?ao

190 TAIPAN: A Historical Adventure for the Apple Computer

First off, line 820 has us GOSUB 180. That routine, the Price Variation
subroutine, was explained in detail in Chapter 5. It operates once upon
entering each port in order to randomly set the actual prices for each item
of trade — GP(I) — within a range determined by the base prices for the
items in that port — AP(L,I). This must be done simply because there is
always some fluctuation in markets. It's also more interesting to provide
some uncertainty to the player. Yet the variations in prices provided for in
this subroutine are fairly minor compared to the variations from one port
to the next. This fact makes it generally possible to plan a port-to-port
strategy for trading.

But when line 820 next GOSUBs 860, a wider fluctuation of market
prices is brought into play:

fiSS REM BEARS ’N' BULLS SUBROUTINE (Bb0-110)

BUD I = INT (RND (1) * b)

fl?0 IF RND (1) < .85 THEN RETURN

aao CP(I) = INT (GP(*)

* (RND (1) * M) + .5)

BID VTAB IE:

PRINT L$(L)i" MARKET FORCES HAVE":

PRINT "DRIVEN "iG$(I)i" PRICES TO

PRINT GP(I) i :

PRINT "!"i

100 GOSUB ?ao

110 RETURN

Current Events: CHAPTER EIGHTEEN 191

Out of every hundred port visits we make, about fifteen times we'll
encounter larger than normal price variations in one item. That item is
selected randomly in line 860.

Line 870 has us RETURN without unusual fluctuations in about 85% of
our visits.

The new price of the item involved is set to anywhere from one half its
"normal" price to three times normal, in line 880. (It's always possible
that the price set will still not be very unusual.)

An announcement of the fluctuation is given by line 890. Line 900
gives a Delay subroutine call, and 910 RETURNS program flow to the
Events subroutine at line 820.

There is yet a third subroutine which line 820 now calls, the Hi/Lo sub¬
routine:

IAS RE(1 HI-L0 SUBROUTINE (150-B10)

150 FOR I = 0 TO 5:

IF GP(I) > H (L11) THEN H(L-,I) = GP(I)

BOO IF G P (I) < L (L 11) OR L (L I) = 0 THEN L (L -> I) =

GP (I)

B10 NEXT I:

RETURN

The Hi/Lo subroutine keeps information up to date for the Records
subroutine. The subroutine goes through a loop, comparing the current
local market prices for each item — GP(I) — to the previous high and low
prices for the same items. If a new record high or low price for an item in
the port we're visiting is encountered, that value is placed into two-

192 TAIPAN: A Historical Adventure for the Apple Computer

dimensional array H(L,I) or L(L,I). After these checks are made, the pro¬
gram RETURNS.

Meanwhile, back at line 820, variable DN is set to a value equal to up to
half the player's cash. (This variable may be used soon to determine how
much Li Yuen wants for a "donation".) Next, a warning message may be
given to the player, if the player's tribute to piratical Li Yuen is not "paid
up". The flag TR can either equal zero, in which case we're in arrears
with our "insurance policy", or TR can equal one, to indicate we're "in
good hands" with Li Yuen. If Li has either never been paid tribute, or has
decided that our last payment has "expired", a "please visit" message
may be delivered to us upon arriving in any port except Hongkong. In
these circumstances, we'll encounter one of Li's messengers about one
time out of five. (Generally speaking, this is a message which should be
heeded!)

Every time we arrive in Hongkong without Li Yuen's protection, we're
given (assuming we have at least one hundred in cash) an opportunity to
make a "contribution" to Li:

630 IF C > 1DD AND TR = □

AND L = D THEN GOSUB 1340:

VTAB IE:

PRINT YS$ i"i LIEUTENANTS":

PRINT "OF THE MARINER-, " i LY$ASK IF":

PRINT "YOU WILL DONATE ";:

<2 = DN:

GOSUB 1330:

PRINT "TO THE TEMPLE OF TIN HAU-, THE"

A31 IF C > 100 AND TR = 0 AND L = 0

THEN PRINT "SEA GODDESS- (Y) OR (N)"

Using the value we set in line 820 for DN, the above lines give us a very
pleasantly worded shake-down for money. (We can pay and feel warm
inside — after all, we're just making a church contribution!)

The next two lines handle our input, adjustments to our cash and
tribute-status, and the reaction of Mr. Yamato and Mr. Smythe:

Current Events: CHAPTER EIGHTEEN 193

640 IF C > 0 AND TR = 0 AND L = 0 THEN GOSUB bO:

IF X$ = "Y" THEN C = C - DN:

TR = l:

GOSUB 130:

GOSUB 1340:

VTAB IE:

PRINT " ":

PRINT " "iYSSi" THANK":

PRINT " YOUn AND DEPART.":

PRINT:

PRINT A$i

641 IF C > 0 AND TR = 0 AND L = 0

THEN IF X$ <> "Y" THEN GOSUB 1340:

VTAB IE:

PRINT " ":

PRINT " "iYS$i" DEPART":

PRINT "ABRUPTLY IN A CHILLY SILENCE.":

PRINT A*:,

Now we only need to do a little screen-cleaning, run a Delay subrou¬
tine call, and update the screen (in case we just parted with some
money). We also need to RETURN, so the game can continue at line 220.
Lines 850 and 851 do this:

6S0 IF (TR = 0 AND L = 0)

OR X$ = "Y" AND L = 0 THEN PRINT:

PRINT A$i:

GOSUB 760:

VTAB 13:

PRINT A$:

PRINT:

PRINT

194 TAIPAN: A Historical Adventure for the Apple Computer

651 RETURN

Give yourself a hearty pat on your back. You've now finished entering
the main portion of Taipan! Only the Sea Action subroutines in the next

chapter remain.

Here are this chapter's lines of BASIC code once again:

165 REN HI-LO SUBROUTINE (ITO-EIO)

nO FOR I = 0 TO 5:

IF GP(I) > H(Lnl) THEN H(L-iI) = GP(I)

EDO IF GP(I) < L (L-> I) OR L (L •. I) = 0 THEN L (LI) =

GP (I)

E10 NEXT I:

RETURN

765 REN EVENTS SUBROUTINE (7*10-651)

7*10 IF K = 1 THEN RETURN

7T1 K = is

X = 50 + INT (RND (1) * 100) + 1=

GN = INT (RND (1) * 3) +1:

XP = (X + (GN * 50)) * 100:

IF C < XP OR RND (1) < -75 THEN 605

T'lE GOSUB 1340:

VTAB IS:

PRINT " A BROKER OFFERS TO TAKE YOUR":

PRINT "VESSEL IN TRADE FOR ONE WITH":

PRINT GN + Gi" GUNS & "iX + Nidi" CAPACITY"

Current Events: CHAPTER EIGHTEEN 195

ADO PRINT "FOR "^XPn" IN CASH- WILL YOU":

PRINT " ACCEPT (<Y> OR <N>)?":,:

GOSUB bO:

VTAB IE:

IF X$ = "Y" THEN C = C - XP:

SH = SH + X:

Hill = Mil + X:

G = G + GN:

GOSUB 130

A05 GOSUB 1340

810 IF C > D AND D > EOOO AND RND (1) > •?

THEN GOSUB 1340:

VTAB IE:

PRINT "YOU'VE BEEN ATTACKED AND ROBBED

BY IRON LOTUS RUFFIANS-. TAIPAN !" i :

C = INT (C / 3) :

GOSUB 7b0:

GOSUB 130

8E0 GOSUB 180:

GOSUB 8b0:

GOSUB nO:

GOSUB 1340:

DN = INT ((C / E) * RND (1)):

IF RND (1) > -8 AND TR = 0

AND L <> 0 THEN VTAB IE:

PRINT " A MESSENGER FROM "nLY$i" ASKS"

PRINT "THAT YOU RETURN TO HONGKONG"

8E1 IF RND (0) > -8 AND TR = 0 AND L <> 0

PRINT "WITHOUT DELAY-. TAIPAN ■ " :

GOSUB 780

r

THEN

196 TAIPAN: A Historical Adventure for the Apple Computer

A30 IF C > 100 AND TR = 0

AND L = □ THEN GOSUB 1340:

VTAB IE:

PRINT YS$i"i LIEUTENANTS":

PRINT "OF THE MARINER-. "iLY^i"-. ASK IF":

PRINT "YOU WILL DONATE

Q = DN:

GOSUB 1330:

PRINT "TO THE TEMPLE OF TIN HAU -. THE"

A31 IF C > IDO AND TR = 0 AND L = 0

THEN PRINT "SEA GODDESS. (Y) OR (N)"

AMD IF C > D AND TR = D AND L = 0 THEN GOSUB L.0

IF X$ = "Y" THEN C = C - DN:

TR = l:

GOSUB 130:

GOSUB 1340:

VTAB IE:

PRINT " ":

PRINT " " iYS$i" THANK":

PRINT " YOU-. AND DEPART.":

PRINT:

PRINT ASm

A41 IF C > 0 AND TR = 0 AND L = 0

THEN IF X$ <> "Y" THEN GOSUB 1340:

VTAB IS:

PRINT " ":

PRINT " "^YS$t" DEPART":

PRINT "ABRUPTLY IN A CHILLY SILENCE.":

PRINT A$i

Current Events: CHAPTER EIGHTEEN

flSD IF (TR = □ AND L = □)

OR X$ = "Y" AND L = D THEN PRINT:

PRINT A$i:

COSUB 7fl0:

VTAB 13:

PRINT A$:

PRINT:

PRINT

fiSl RETURN

flS5 REn BEARS 'N' BULLS SUBROUTINE (flbO-TIO)

flbO I = INT (RND (1) * U)

fl?0 IF RND (1) < •AS THEN RETURN

flfiO GP(I) = INT (GP(I)

* (RND (1) * M) + -S)

6=50 VTAB IB:

PRINT L$(L)i" MARKET FORCES HAVE":

PRINT "DRIVEN "^G$(I)i" PRICES TO "i:

PRINT GP(I) V:

PRINT "!"i

TDD GOSUB 7fl0

T1D RETURN

Nicholas Iquan

T A I P A N
A Historical Adventure for the Apple® Computer

Action at Sea
CHAPTER NINETEEN

These subroutines are a simple method of giving some visual excitement
to our pirate counters.

Using the Apple II in BASIC, it is very difficult to operate high-
resolution graphics, especially with any kind of animation speed. So
what we have here is an example of compromises: we've used your
Apple's normal characters, like " \ ", and "0", to build and
move a fair representation of a pirate junk.

These subroutines, which are called by GOSUBs mainly in the Pirates
routine, will display the arrival and the attack of a pirate ship. If you're
lucky, you'll also get to see pirate ships run away from you, or even sink.
Or you might witness yourself sinking!

By now, you must be either very anxious to RUN Taipan, or very weary
of typing this game into your machine. (Maybe both!) The Authors will
spare you convoluted explanations in this chapter, and will only tell
briefly what the routines do.

199

200 TAIPAN: A Historical Adventure for the Apple Computer

Here's the first routine, which is called by line 50 in the Initialized rou¬
tine when the program first starts. This sets up the shape of the pirate
ship:

4555 REH SEA ACTION SUBROUTINES (5000-b3b0)

4557 REH GRAPHICS INITIALIZATION (5000-5120)

5000 DIM CH$ (14) -l CN$ (14)

SOUS FOR VI = 0 TO 12

5010 READ CH$(V1)

5020 CN$(VI) = CH*(V1)

5030 NEXT VI

5040 DATA VI " :

5050 DATA " -

50b0 DATA " - \:

5070 DATA " :/ - \\

5075 DATA " // \\\

SOflO DATA "/// \\\

5055 DATA "/// \\

5050 DATA "/// - :\

5100 DATA "// - :

Action at Sea: CHAPTER NINETEEN 201

5105 DATA •

5110 DATA
n •_ : :000:

5111 DATA \— -/ /

5112 DATA " \ /

5120 RETURN

You can already see, in the DATA lines, what the pirate junk looks like,

can't you?

Now, here's the first Sea Action subroutine which the Pirates routine

calls when the enemy is first sighted:

52^0 REM PIRATES ARRIVE (5300-5370)

5300 G0SUB 5=150

5305 IF ID <> 1 THEN CH$(0) = " ===:

5310 FOR A = 1 TO 10:

VTAB l:

PRINT ASi:

NEXT A

5320 FOR A = 1 TO 30

5340 FOR B = 0 TO 13

5350 VTAB B + 1:

HTAB 40 - A:

PRINT LEFTS (CHS (B) i A) ■> ^" "i

202 TAIPAN: A Historical Adventure for the Apple Computer

53b0 NEXT B:

NEXT A

5370 RETURN

The Pirates Arrive subroutine makes the pirate ship sail into view from
the right side of the screen. If the ship is one of Li Yuen's, a banner is
shown atop the highest mast.

The following subroutine shows the blazing guns of the pirate ship:

5350 REN PIRATES FIRE (5360-5440)

53T0 FOR A = 1 TO INT (RND (1) * b)

5410 Al = INT (RND (1) * 10) + 1

5420 IF Al = 5 THEN 5410

5430 HTAB lb + Al:

VTAB 11:

PRINT "*"

5432 PRINT "aG"

5433 HTAB lb + Al:

VTAB 11:

PRINT " "

5435 NEXT A

5440 RETURN

Action at Sea: CHAPTER NINETEEN 203

Notice the "aG" in line 5432 above. It's there to let us hear the pirates
firing off each shot. (Remember to type it using the Control and G keys
simultaneously.)

The "Cannon Hit" subroutine makes our beeper sound off to show
either that we've been hit or that the pirates have:

5540 REM CANNON HIT (5550-551=0)

5550 PRINT "aG"

55L0 RETURN

This subroutine punches holes in the image of the pirate ship, if we've

hit it:

5t.fi0 DAMAGE ’EM (5730-57U0)

5730 I = INT (RND (1) * 17) + 2=

II = INT (RND (1) * 5) + 2

5740 CHS(ID = LEFTS (CHS(Il)iI - 1) + n "

+ MIDS (CHS (II) i I + 1 -i LEN (CHS(Il)))

5750 HTAB 10:

VTAB II + l:

PRINT CHS (ID

5755 G0SUB 7fl0

57b0 RETURN

204 TAIPAN: A Historical Adventure for the Apple Computer

There are few greater pleasures than seeing this one work! The pirate
junk slides down into the ocean:

SA30 REN PIRATES SINK (5A40-5=140)

5A40 FOR A = □ TO IE

SASO VTAB A + l:

PRINT A*i

5A70 FOR A1 = □ TO IE - A

5AA0 VTAB E + A + Al:

HTAB 10:

PRINT CH$(Al)

SATO NEXT Al

5=110 NEXT A

5=130 VTAB 14:

PRINT A$i

5=130 GOSUB 5=150

5=140 RETURN

If we've sunk one pirate junk, this subroutine makes the next junk
look undamaged:

5=150 REN REPAIR DANAGE (51^0-5=1=10) j

5=11=0 FOR A = 0 TO 13

5=170 CH$(A) CN$(A)

Action at Sea: CHAPTER NINETEEN 205

STflO NEXT A

5^0 RETURN

Next to the "Pirates Sink" subroutine, this one's our favorite. It makes

the pirates disappear off the left side of the screen:

blOO REM PIRATES DEPART (fc,110-t>21D)

bllD FOR A = 1 TO 0 STEP - 1

b!30 FOR B = 0 TO 13

bl4D HTAB A+ 1:

VTAB B + l:

PRINT CHS (B) :i" "

blSO NEXT B:

NEXT A

blbD FOR A = 32 TO 1 STEP - 1

blfiO FOR B = 0 TO 13

bllD HTAB l:

VTAB B + is

PRINT RIGHTS (CHS (B) ■> A) i" "

b200 NEXT B:

NEXT A

fc>210 RETURN

206 TAIPAN: A Historical Adventure for the Apple Computer

If we run from the pirates, we show the pirate junk receding to the
right side of the screen. (If we don't manage to get away from any or all of
the attackers, we'll soon see a junk catching up with us.) Here's the sub¬
routine:

LEEO REM WE PULL AWAY (bE30-bEA0)

LE30 FOR A = 30 TO 1 STEP - 1

LSSD FOR B = 0 TO 13

L.EL0 HTAB 40 - A:

VTAB B + l:

PRINT " "i LEFTS (CHS (B)-, A) i CHRS (A)i" "i

LE70 NEXT B:

NEXT A

LEAD RETURN

Ouch! We see bubbles floating up the screen as we head for Davy
Jones':

bS'lO REN WE’RE SUNK! (t.300-b3b0)

1,300 FOR A = 1 TO 17

U310 FOR B = 1 TO 100:

NEXT B

L3E0 VTABE4:

HTAB INT (RND (1) * 40) + 1:

PRINT "0n

Action at Sea: CHAPTER NINETEEN 207

fc.350 NEXT A

k3b0 RETURN

There you have it. Congratulations on typing in a Contextual Com¬

puter Game!

T A I P A N
A Historical Adventure for the Apple® Computer

Bibliography
APPENDIX A

The Authors would like to express their appreciation to the Public Library
system. It is a treasure of our nation. May it remain free.

Here are some of the books which either inspired us, or otherwise
aided us in our project:

Tai-Pan, by James Clavell, Dell

Dynasty, by Robert S. Elegant, Fawcett

Sail and Sweep in China, by G.R.G. Worchester, Her Majesty's Station¬
ery Office

Rascals in Paradise, by James Michener and A. Grove Day, Random
House

Sailing through China, by Paul Theroux, Houghton Mifflin Company

Historical and Geographical Dictionary of Japan, by E. Papinot, Charles E.
Tuttle Company

209

210 TAIPAN: A Historical Adventure for the Apple Computer

China: Adventures in Eyewitness History, by Rhoda Hoff, Henry Z.
Walck, Inc.

The Art of War, by Sun Tzu (edited by James Clavell), Delacorte Press

T A I P A N
A Historical Adventure for the Apple® Computer

Playing Taipan
APPENDIX B

Taipan is meant to be a challenging game. A player may sometime find
that some things which happen in the game are "unfair". Even making
the right decisions doesn't always work. For instance, paying Li Yuen his
tribute does not guarantee that he won't attack us without warning. Like¬
wise, the cruel sea may cause our ship to founder, ending our budding
mercantile career early.

But in the real world, people are sometimes as unpredictable as Li
Yuen. And the sea has never cared for human concepts of justice. We
must do the best that we can, within the limits of success which our intel¬
ligence allows. If an "unfair" event kills us off in Taipan, remember that it
is just a game. We pick up the pieces and start over again.

Taipan needs very little in the way of playing instructions. Everything
which happens is self-explanatory. The main guides to use when playing
the game are common sense and the lessons of experience. This is how
the real taipans operated in a world alien to them.

211

212 TAIPAN: A Historical Adventure for the Apple Computer

People are often tempted to "cheat", even in single-player games. It's
possible, of course, to cheat in Taipan. But the issue of who is cheated is
important. A player can get twenty-humpzillion guns and three-
quadshillion in cash, simply by input variable values while in the "com¬
mand" mode. But why? What kind of game would we then have?

Taipan is a game which puts the player in the shoes of a China Trader
of the 1800's. Those were not clean shoes — they were stained with blood
and opium. The Authors do not intend that players emulate the old tai-
pans in real life but rather to obtain some measure of understanding of a
real historical context through the medium of the microcomputer. This is
an opportunity to "re-live" the past which was impossible for earlier gen¬
erations — and the Contextual Computer Games of the future will doubt¬
less make our efforts appear puny.

Index

Arrival routine, 131, 171
Arrow War, 184
ASCII, 65

Bears 'n' Bulls subroutine, 190
Big Number Subroutine, 39
Bombay, 15
Boston Tea Party, 13
British, 15
Buy/Sell routine, 48

Calcutta, 15
Cape of Good Hope, 25
Captain China, 140
Captain del Cano, 22
Capture routine, 165, 170
Cebu, 22
Cheating, 47, 64
China, 1
China clippers, 185
China Trade, 1, 2
Chinese Taels, 29
Ch'ing Dynasty, 13
Clean Up subroutine, 78
Contextual computer game, 5
Commissioner Lin Tse-hsu, 16
Crown Colony, 20
Cursor, 64

Delay subroutine, 61
Dollars Mex, 22
Dragon boats, 184
Dutch, 23

posts, 23
East India Company, 23

Elder Brother Wu, 11, 29, 41
Elliot, Captain Charles, 20
Embark routine, 129
Events subroutine, 187

Flag, 47
Formosa, 140

Game, 29
Game time, 29
Get String, 45
Godown, 17
Godown subroutine, 85

Item choice, 86
Grand Canal, 21

Han Empire 13
Harris, Townsend, 21
Hi/Lo subroutine, 191
Hongkong, 20

Victoria, 20
Hsu, Paul, 13
Huai, 21

Initialization, 9
Input Error, 80
Input Error subroutine, 46
Intramuros, 22
Iron Lotus Triad, 111
Item Choice subroutine, 49
Iquan, Nicholas, 140, 141

Japan, 1, 14
Jingals, 144
Junks, 183

Kamikaze, 183
Koxinga, 140

Lapu-Lapu, 22
Lender menu, 113
Lender subroutine, 112
Liverpool, 25
Li Yuen, 11

213

214 TAIPA N: A Historical Adventure for the Apple Computer

Loops, 28
nested, 27

Lorcha, 183

Macau, 20, 140, 183
Magellan, Ferdinand, 22
Main Display subroutine, 37
Malay, 17
Manchu Empire, 141
Manila, 22
Market Menu Input routine, 44
Ming Dynasty, 13, 141
Min Kingdom, 21
Muslim, 22

Nicholas Iquan, 140, 141
No-Can-Do subroutine, 61

Opium War, 16
Other Options routine, 60, 87

Pearl River, 20
Pepper, 14
Perry, Commodore, 1, 21
Philippines, 21
Pirates, 147
Pirates routine, 147
Polo, Marco, 14
Port Choice subroutine, 97
Portuguese, 21
Price Variation subroutine, 28

Queen Victoria, 16

Raffles Hotel, 23
Raffles, Sir Thomas Stamford, 23
Random number generator, 30
Randomizer subroutine, 30, 34

Records subroutine, 96
menu, 97

Restaurant French, 19
Roaring Forties, 25

Saigon, 24
Sampans, 182
Schall, Father Adam, 13
Scientific notation, 39
Ship Status subroutine, 148
Silk, 15
Singapore, 19
Smythe, 151
Sooper Dooper Number Scooper

subroutine, 62

Spain, 21
Spices, 1

Taipan, 1
Taipan geography, 19
Tea, 13
That's All Folks routine, 123
Transaction Quantity routine, 67
Treaty of Kanagawa, 21
Treaty ports, 20
Triads, 2

Update subroutine, 172

Victoria, 20
Voyage routine, 131

storm, 133

Walla-walla boat, 183
Whole numbers, 67

Yamato, 151
Yangstse river, 21
Yellow river, 21

T A I P A N
A Historical Adventure for the Apple® Computer

is available on disk!

For just $4.95 plus shipping and handling, we'll send you a disk that
contains the Taipan program. The disk runs on the Apple II Plus, lie,

or lie.

Use the handy order form below to order your Taipan adventure.

Please send me the disk containing the Taipan adventure (#7764-5). I
am enclosing a check or money order for $4.95 per disk plus $2.50 for
shipping and handling for each order.

Quantity Price

_ $4.95

NJ and CA residents add tax

shipping and handling

total amount

Total

$2.50

Name (print)--— ---

Address-----

City____State-Zip-
Prices subject to change. Offer good in USA only. Allow 4-6

weeks for delivery.

Send your check or money order to:

Hayden Book Company
Department TP
10 Mulholland Drive
Hasbrouck Heights, NJ 07604

